精英家教网 > 高中数学 > 题目详情
要在墙上开一个上半部为半圆形、下部为矩形的窗户(如图所示),在窗框为定长的条件下,要使窗户能够透过最多的光线,窗户应设计成怎样的尺寸?
考点:基本不等式在最值问题中的应用
专题:应用题,函数的性质及应用
分析:根据窗户面积为:一个矩形的面积+半圆的面积,分别表示出利用二次函数最值求法得出边长即可.
解答: 解:∵窗框的用料是am,
∴假设AD=2x,AB=
a-πx-4x
2

∴窗子的面积为:S=2x•
a-πx-4x
2
+
1
2
πx2=(-
π
2
-4)x2+ax,
当x=
a
8+π
时,此时面积最大,窗户能够透过最多的光线.
∴AD=
2a
8+π
,AB=
2a
8+π

∴半圆直径与矩形的高的比为2:1,窗户能够透过最多的光线.
点评:本题主要考查了函数模型的选择与应用,以及圆的面积和二次函数的性质,同时考查了计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0),F1,F2分别是椭圆的左、右焦点,椭圆上总存在点P使得PF1⊥PF2,则椭圆的离心率的取值范围为(  )
A、[
2
2
,1)
B、(
2
2
,1)
C、(0,
2
2
D、(0,
2
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y2=4x上一点A的横坐标为4,则点A与抛物线焦点的距离为(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)是定义在R上的偶函数,且满足f(x+3)=f(x),f(2)=0,则方程f(x)=0在区间(0,6)内解的个数的最小值是(  )
A、5B、4C、3D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x不等式x2-2ax+a+2≤0(a∈R)的解集为M.
(1)当M为空集时,求实数a的取值范围;
(2)如果M⊆[1,4],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,A={x|(x-2)(5-x)≥0},B={x||2x-5|≤3},求
(1)A∩B;
(2)(∁UA)∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l经过点P(3,2),且与x轴y轴的正半轴分别交于点A,B,求l在两坐标轴上截距之和的最小值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

经过下列两点的直线的斜率是否存在,如果存在,求其斜率.
(1)A(-
3
2
)、B(
2
,-
3
);
(2)P(m,b-2)、Q(m,c-6).

查看答案和解析>>

科目:高中数学 来源: 题型:

7个身高均不相同的学生排成一排合影留念,最高个子站在中间,从中间到左边和从中间到右边一个比一个矮,则这样的排法共有
 
种.

查看答案和解析>>

同步练习册答案