19£®³ÇÊй«½»³µµÄÊýÁ¿Ì«¶àÈÝÒ×Ôì³É×ÊÔ´µÄÀË·Ñ£¬Ì«ÉÙÓÖÄÑÒÔÂú×ã³Ë¿ÍÐèÇó£¬Îª´Ë£¬Ä³Êй«½»¹«Ë¾ÔÚijվ̨µÄ90Ãûºò³µ³Ë¿ÍÖÐËæ»ú³éÈ¡15ÈË£¬½«ËûÃǵĺò³µÊ±¼ä×÷ΪÑù±¾·Ö³É5×飬Èç±íËùʾ£¨µ¥Î»£ºmin£©£º
×é±ðºò³µÊ±¼äÈËÊý
Ò»[0£¬5£©2
¶þ[5£¬10£©6
Èý[10£¬15£©4
ËÄ[15£¬20£©2
Îå[20£¬25]1
£¨1£©¹À¼ÆÕâ90Ãû³Ë¿ÍÖкò³µÊ±¼äÉÙÓÚ10·ÖÖÓµÄÈËÊý£»
£¨2£©Èô´ÓÉϱíµÚÈý¡¢ËÄ×éµÄ6ÈËÖÐÑ¡2ÈË×÷½øÒ»²½µÄÎʾíµ÷²é£¬Çó³éµ½µÄÁ½ÈËÇ¡ºÃÀ´×Ô²»Í¬×éµÄ¸ÅÂÊ£®

·ÖÎö £¨1£©ÏÈÇó³öºò³µÊ±¼äÉÙÓÚ10·ÖÖӵĸÅÂÊ£¬ÓÉ´ËÄܹÀ¼ÆÕâ90Ãû³Ë¿ÍÖкò³µÊ±¼äÉÙÓÚ10·ÖÖÓµÄÈËÊý£®
£¨2£©½«µÚÈý×é³Ë¿Í±àºÅΪa1£¬a2£¬a3£¬a4£¬µÚËÄ×é³Ë¿ÍΪb1£¬b2£¬ÀûÓÃÁоٷ¨ÄÜÇó³ö´Ó6ÈËÖÐÈÎÑ¡Á½ÈË£¬³éµ½µÄÁ½ÈËÇ¡ºÃÀ´×Ô²»Í¬×éµÄ¸ÅÂÊ£®

½â´ð ½â£º£¨1£©ºò³µÊ±¼äÉÙÓÚ10·ÖÖӵĸÅÂÊΪ£ºp=$\frac{2+6}{15}$=$\frac{8}{15}$£¬
¡à¹À¼ÆÕâ90Ãû³Ë¿ÍÖкò³µÊ±¼äÉÙÓÚ10·ÖÖÓµÄÈËÊýΪ£º
90¡Á$\frac{8}{15}$=48ÈË£®
£¨2£©½«µÚÈý×é³Ë¿Í±àºÅΪa1£¬a2£¬a3£¬a4£¬µÚËÄ×é³Ë¿ÍΪb1£¬b2£¬
´Ó6ÈËÖÐÈÎÑ¡Á½È˰üº¬15¸ö»ù±¾Ê¼þ£¬·Ö±ðΪ£º
£¨a1£¬a2£©£¬£¨a1£¬a3£©£¬£¨a1£¬a4£©£¬£¨a1£¬b1£©£¬£¨a1£¬b2£©£¬£¨a2£¬a3£©£¬£¨a2£¬a4£©£¬£¨a2£¬b1£©£¬£¨a2£¬b2£©£¬£¨a3£¬a4£©£¬£¨a3£¬b1£©£¬£¨a3£¬b2£©£¬£¨a4£¬b1£©£¬£¨a4£¬b2£©£¬£¨b1£¬b2£©£¬
ÆäÖÐÁ½ÈËÇ¡ºÃÀ´×Ô²»Í¬×é°üº¬8¸ö»ù±¾Ê¼þ£¬
¡à³éµ½µÄÁ½ÈËÇ¡ºÃÀ´×Ô²»Í¬×éµÄ¸ÅÂÊΪp=$\frac{8}{15}$£®

µãÆÀ ±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ¹Åµä¸ÅÐͼ°Æä¸ÅÂʼÆË㹫ʽµÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®µãPµÄÖ±½Ç×ø±êΪ£¨-$\sqrt{2}$£¬$\sqrt{2}$£©£¬ÄÇôËüµÄ¼«×ø±ê¿É±íʾΪ£¨¡¡¡¡£©
A£®£¨2£¬$\frac{¦Ð}{4}$£©B£®£¨2£¬$\frac{3¦Ð}{4}$£©C£®£¨2£¬$\frac{5¦Ð}{4}$£©D£®£¨2£¬$\frac{7¦Ð}{4}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®É躯Êýf£¨x£©=|x-2|-|2x+l|£®
£¨I£©Çó²»µÈʽf£¨x£©¡ÜxµÄ½â¼¯£»
£¨II £©Èô²»µÈʽf£¨x£©¡Ýt2-tÔÚx¡Ê[-2£¬-1]ʱºã³ÉÁ¢£¬ÇóʵÊýtµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®£¨1£©Çó²»µÈʽ£¨$\frac{1}{4}$£©x£¾£¨$\frac{1}{2}$£©x-1µÄ½â¼¯
£¨2£©Çóº¯Êý$y={£¨{\frac{1}{2}}£©^{{x^2}+2x+2}}$µÄµÝÔöÇø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Ô²¦Ñ=2cos¦ÈµÄÔ²Ðĵ½Ö±Ïß-$\left\{\begin{array}{l}{x=t}\\{y=\sqrt{3}t}\end{array}\right.$£¨tΪ²ÎÊý£©µÄ¾àÀëÊÇ$\frac{{\sqrt{3}}}{2}$•

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;£¨a£¾b£¾0£©$µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¨-1£¬0£©£¬F2£¨1£¬0£©£¬¹ýF1×÷ÓëxÖá²»ÖØºÏµÄÖ±Ïßl½»ÍÖÔ²ÓÚA£¬BÁ½µã£®
£¨I£©Èô¡÷ABF2ΪÕýÈý½ÇÐΣ¬ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨II£©ÈôÍÖÔ²µÄÀëÐÄÂÊÂú×ã$0£¼e£¼\frac{{\sqrt{5}-1}}{2}$£¬OÎª×ø±êÔ­µã£¬ÇóÖ¤£º¡ÏAOBΪ¶Û½Ç£®£¨¿É¹©²Î¿¼£º$\frac{{\sqrt{3}}}{3}£¼\frac{{\sqrt{5}-1}}{2}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑ֪ij¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{3}$B£®$\frac{3}{2}$C£®1D£®$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖªx£¾0ʱÓв»µÈʽx+$\frac{1}{x}$¡Ý2£¬x+$\frac{4}{{x}^{2}}$=$\frac{x}{2}$+$\frac{x}{2}$+$\frac{4}{{x}^{2}}$¡Ý3£¬¡­³ÉÁ¢£¬ÓÉ´ËÆô·¢ÎÒÃÇ¿ÉÒÔÍÆ¹ãΪx+$\frac{a}{{x}^{n}}$¡Ýn+1£¨n¡ÊN*£©£¬ÔòaµÄֵΪnn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÔÚ-360¡ã¡«360¡ãÖ®¼äÕÒ³öËùÓÐÓëÏÂÁи÷½ÇÖÕ±ßÏàͬµÄ½Ç£¬²¢Åжϸ÷½ÇËùÔÚµÄÏóÏÞ£®
£¨1£©790¡ã
£¨2£©-20¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸