精英家教网 > 高中数学 > 题目详情
10.设函数f(x)=|x-2|-|2x+l|.
(I)求不等式f(x)≤x的解集;
(II )若不等式f(x)≥t2-t在x∈[-2,-1]时恒成立,求实数t的取值范围.

分析 (Ⅰ)根据绝对值的几何运用,分类讨论,求得f(x)≤x的解集.
(Ⅱ)x∈[-2,-1]时,f(x)=x+3,最小值为1,再根据t2-t≤1,求得实数t的取值范围.

解答 解:(Ⅰ)x≤-$\frac{1}{2}$时,x+3≤x,不成立;
-$\frac{1}{2}$<x<2时,-3x+1≤x,解得x≥$\frac{1}{4}$,∴$\frac{1}{4}$≤x<2;
x≥2时,-x-3≤x,∴x≥-$\frac{3}{2}$,∴x≥2,
综上所述,不等式f(x)≤x的解集为[$\frac{1}{4}$,+∞);
(II )x∈[-2,-1]时,f(x)=x+3,最小值为1.
∵不等式f(x)≥t2-t在x∈[-2,-1]时恒成立,
∴t2-t≤1,
∴$\frac{1-\sqrt{5}}{2}$≤t≤$\frac{1+\sqrt{5}}{2}$.

点评 本题考查绝对值不等式的解法,函数的恒成立问题,体现了转化、分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.执行如图所示的程序框图,输出的S值为(  )
A.6B.14C.8D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.以平面直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ2(1+3sin2θ)=4.
(Ⅰ)求曲线C的参数方程;
(Ⅱ)若曲线C与x轴的正半轴及y轴的正半轴分别交于点A、B,在曲线C上任取 一点P,求点P到直线AB的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知集合M⊆{2,3,5},且M中至少有一个奇数,则这样的集合共有4个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.36的所有正约数之和可按如下方法得到:因为36=22×32,所以36的所有正约数之和为(1+3+32)+(2+2×3+2×32)+(22+22×3+22×32)=(1+2+22)(1+3+32)=91,参照上述方法,可得100的所有正约数之和为(  )
A.217B.273C.455D.651

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x+|x+2|.
(1)解不等式f(x)≥6的解集M;
(2)记(1)中集合M中元素最小值为m,若a,b∈R+,且a+b=m,求$({\frac{1}{a}+1})({\frac{1}{b}+1})$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数$f(x)=Acos({ωx+φ})({A>0,ω>0,|φ|<\frac{π}{2}})$的图象如图所示,若将函数f(x)的图象向左平移$\frac{π}{2}$个单位,则所得图象对应的函数可以为(  )
A.$y=-2sin({2x+\frac{3π}{4}})$B.$y=2sin({2x+\frac{3π}{4}})$C.$y=-2sin({2x+\frac{5π}{4}})$D.$y=2sin({2x+\frac{5π}{4}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.城市公交车的数量太多容易造成资源的浪费,太少又难以满足乘客需求,为此,某市公交公司在某站台的90名候车乘客中随机抽取15人,将他们的候车时间作为样本分成5组,如表所示(单位:min):
组别候车时间人数
[0,5)2
[5,10)6
[10,15)4
[15,20)2
[20,25]1
(1)估计这90名乘客中候车时间少于10分钟的人数;
(2)若从上表第三、四组的6人中选2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设i为虚数单位,则(-1+2i)(2-i)=(  )
A.5iB.-5iC.5D.-5

查看答案和解析>>

同步练习册答案