精英家教网 > 高中数学 > 题目详情
8.若变量x,y满足约束条件$\left\{\begin{array}{l}x+y≥0\\ x-y-2≤0\\ y≤2\end{array}\right.$,则z=x+2y+1的最大值为9.

分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.

解答 解:作出约束条件$\left\{\begin{array}{l}x+y≥0\\ x-y-2≤0\\ y≤2\end{array}\right.$对应的平面区域(阴影部分),
由z=x+2y+1,得y=-$\frac{1}{2}$x+$\frac{1}{2}$z-$\frac{1}{2}$,
平移直线y=-$\frac{1}{2}$x+$\frac{1}{2}$z-$\frac{1}{2}$z,由图象可知当直线y=-$\frac{1}{2}$x+$\frac{1}{2}$z-$\frac{1}{2}$经过点A时,直线y=-$\frac{1}{2}$x+$\frac{1}{2}$z-$\frac{1}{2}$的截距最大,此时z最大.
由$\left\{\begin{array}{l}{y=2}\\{x-y-2=0}\end{array}\right.$,解得A(4,2).
此时z的最大值为z=x+2y+1=4+2×2+1=9,
故答案为:9.

点评 本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知集合A={x|a-b<x<a+b},B={x<-1或x>5}
(1)若b=1,A∩B=A,求a的取值范围;
(2)若a=1,A∩B=∅,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.郴州市某路公共汽车每7分钟一趟,某位同学每天乘该路公共汽车上学,则他等车时间小于3分钟的概率为(  )
A.$\frac{4}{7}$B.$\frac{3}{7}$C.$\frac{3}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.高一(3)班共有50人,若其中文艺爱好者20人,体育爱好者15人,文艺.体育均不爱好的20人,则文艺.体育均爱好的人数为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(Ⅰ)若双曲线方程为$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1,求此双曲线的离心率和渐进线方程;
(Ⅱ)抛物线的顶点在原点,准线是y=8,求抛物线的标准方程和焦点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,四棱锥P-ABCD的底面为等腰梯形,AB∥DC,AB=2AD,AD=BC=1,若PA⊥平面ABCD,∠ABC=60°
(1)求证:平面PAC⊥平面PBC;
(2)若点D到平面PBC的距离为$\frac{{\sqrt{3}}}{4}$,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在平面直角坐标系中,方程为x2+y2+DX+Ey+F=0的圆M的内接四边形ABCD的对角线AC和BD互相垂直,且AC和BD分别在x轴和y轴上.
(1)若四边形ABCD的面积为40,对角线AC的长为8,$\overrightarrow{AB}•\overrightarrow{AD}=0$,且∠ADC为锐角,求圆的方程,并求出B,D的坐标;
(2)设四边形ABCD的一条边CD的中点为G,OH⊥AB,且垂足为H,试用平面解析几何的研究方法判断点O、G、H是否共线,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.不等式$\frac{{{x^2}+x}}{2x-1}≤1$的解集是{x|x<$\frac{1}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知A为椭圆$\frac{x^2}{4}+{y^2}$=1上的点,过A作AB⊥x轴,垂足为B,延长BA到C使得|AB|=|AC|.
(1)求点C的轨迹方程;
(2)若直线l过点D(2,3)且与点C的轨迹只有一个公共点,求l的方程.

查看答案和解析>>

同步练习册答案