精英家教网 > 高中数学 > 题目详情
16.若直线kx-y+2k=0与椭圆$\frac{{x}^{2}}{4}$+y2=1相交于A、B两点,P(2,0),则使△APB面积取得最大值时k=$±\frac{1}{2}$.

分析 求出直线经过的定点,画出图形判断三角形APB面积取得最大值时的情况,然后求出k即可.

解答 解:直线kx-y+2k=0经过定点(-2,0)是椭圆$\frac{{x}^{2}}{4}$+y2=1的左顶点,即A、B两点之一,
P(2,0),是椭圆的右顶点,如图:
使△APB面积取得最大值时,B是椭圆的上顶点或下顶点,
可得k=$±\frac{1}{2}$.
故答案为:$±\frac{1}{2}$.

点评 本题考查直线与椭圆的位置关系的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.函数y=2x-$\frac{1}{{x}^{2}}$的极大值是-3,极大值点是x=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2-alnx(a∈R).
(1)若曲线f(x)在(1,f(1))处的切线与直线y=-x+5垂直,求实数a的值.
(2)?x0∈[1,e],使得$\frac{f({x}_{0})+1+a}{{x}_{0}}$≤0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=x2-2x-3,等差数列{an}中,a1=f(x-1),a${\;}_{2}=-\frac{3}{2}$,a3=f(x)
求:(1)x的值;
(2)通项an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示,在四较锥E-ABCD中,底面ABCD为矩形,CD⊥平面BEC,G是线段BE上一点,F是线段DC的中点且GF∥平面ADE,AB=BE=EC=2.
(1)求证:GB=GE;
(2)若BE⊥CE,求直线DG与平面AEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.建筑师在完成砌墙后,经常用一根掉有铅锤的线,紧靠一平面来测试墙面是否与地面垂直;木工师在安装两相交板面后,经常用一把直三角板,用两直角边紧靠两板面,测试两板面是否垂直,你能分别解释这两个原理吗?
答案:(1)平面与平面垂直的判定定理
     (2)平面与平面垂直的定义.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.过点M(3,0)作直线l,交椭圆4x2+y2=16于A、B两点,若AO⊥OB,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某养鸡场流行一种传染病,鸡的感染率为10%,现对10000只鸡进行抽血化验,以期查出所有病鸡,有3种方案:①逐只化验;②按40只鸡一组分组,并把同组的40只鸡抽到的血混合在一起化验,若发现有问题,再分别对该组40只鸡逐只化验;③将②中的40只一组改为4只一组再做.问:哪种方案化验次数的期望值较小?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,⊙O的直径的长是关于x的二次方程x2+2(k-2)x+k=0(k是整数)的最大整数根.P是⊙O外一点,过点P作⊙O的切线PA和割线PBC,其中A为切点,点B,C是直线PBC与⊙O的交点.若PA,PB,PC的长都是正整数,且PB的长不是合数,求PA2+PB2+PC2的值.

查看答案和解析>>

同步练习册答案