精英家教网 > 高中数学 > 题目详情
15.在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么就称它们为一个逆序.一个排列中逆序的总数就称作这个排列的逆序数.如排列1,3,5,4,2中,3,2;5,4;5,2;4,2为逆序,逆序数是4.现有1~101这101个自然数的排列:1,3,5,7,…,99,101,100,98,…,6,4,2,则此排列的逆序数是(  )
A.2 500B.2 600C.2 700D.2 80

分析 从左至右逐一列出逆序的个数再求和,即统计每个数后面的数中比它小的数的个数.由此能求出逆序数之和.

解答 解:从左至右逐一列出逆序的个数再求和,
即统计每个数后面的数中比它小的数的个数.

  1 3 5 7 9 99 101 100 98 96 6 4 2
 逆序数 0 1 2 3 4 49 50 49 48 47 2 1 0
故逆序数之和为0+1+2+3+4+…+49+50+49+…+2+1+0
=(1+2+3+4+…+49)×2+50
=$\frac{(1+49)×49}{2}×2+50$=2500.
故选:A.

点评 本题考查排列的逆序数之和的求法,是中档题,解题时要认真审题,注意分类讨论思想的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知集合M={x|x2<x},N={x|x2+2x-3<0},则M∪N=(  )
A.(-∞,-3)B.(-∞,1)C.(-3,1)D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合A={x|ax=1},B={x|x2-1=0},若A⊆B,则a的取值构成的集合是(  )
A.{-1}B.{1}C.{-1,1}D.{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在如图所示的多面体ABCDE中,AB∥DE,AB⊥AD,△ACD是正三角形,AD=DE=2AB=2,$BC=\sqrt{5}$,F是CD的中点.
(Ⅰ)求证AF∥平面BCE;
(Ⅱ)求多面体ABCDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,直线l:y=k(x+3),
(1)若直线l与C有两个不同的公共点,求实数k的取值范围;
(2)当k=$\frac{1}{2}$时,直线l截椭圆C的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知平面直角坐标系xOy中,以O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的参数方程为$\left\{\begin{array}{l}{x=2\sqrt{3}cosα}\\{y=2sinα}\end{array}\right.$(α为参数),A,B在曲线C上,且A,B两点的极坐标分别为A(ρ1,$\frac{π}{6}$),B(ρ2,$\frac{2π}{3}$).
(I)把曲线C的参数方程化为普通方程和极坐标方程;
(Ⅱ)求线段AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四面体ABCD中,AD⊥平面BCD,E、F分别为AD、AC的中点,BC⊥CD.
求证:(1)EF∥平面BCD
(2)平面BDC⊥平面ACD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=lg(x2+1)的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知在△ABC中,角A,B,C所对的边分别为a,b,c,且$\sqrt{3}bcosC=csinB$;
(1)求角C;
(2)若$c=\sqrt{3}$,求△ABC周长的取值范围.

查看答案和解析>>

同步练习册答案