精英家教网 > 高中数学 > 题目详情
5.已知在△ABC中,角A,B,C所对的边分别为a,b,c,且$\sqrt{3}bcosC=csinB$;
(1)求角C;
(2)若$c=\sqrt{3}$,求△ABC周长的取值范围.

分析 (1)利用正弦定理化简已知等式可得:$\sqrt{3}$sinBcosC=sinCsinB,结合sinB≠0,可得:tanC=$\sqrt{3}$,结合范围C∈(0,π),即可得解C的值.
(2)利用正弦定理可得:$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=2$,利用三角函数恒等变换的应用化简可得:三角形的周长l=2$\sqrt{3}$sin(A+$\frac{π}{6}$)+$\sqrt{3}$,根据A的范围,和正弦函数的图象和性质即可解得△ABC周长的取值范围.

解答 解:(1)∵$\sqrt{3}bcosC=csinB$,
∴利用正弦定理可得:$\sqrt{3}$sinBcosC=sinCsinB,
∵B为三角形内角,sinB≠0,
∴可得:tanC=$\sqrt{3}$,
∵C∈(0,π),
∴C=$\frac{π}{3}$.
(2)∵由(1)及题意可得:$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=2$,
∴三角形的周长l=a+b+c=2sinA+2sinB+$\sqrt{3}$=2sinA+2sin($\frac{2π}{3}$-A)+$\sqrt{3}$=2$\sqrt{3}$sin(A+$\frac{π}{6}$)+$\sqrt{3}$,
∵A∈(0,$\frac{2π}{3}$),A+$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{5π}{6}$),
∴sin(A+$\frac{π}{6}$)∈($\frac{1}{2}$,1],l=2$\sqrt{3}$sin(A+$\frac{π}{6}$)+$\sqrt{3}$∈(2$\sqrt{3}$,3$\sqrt{3}$].
故△ABC周长的取值范围为(2$\sqrt{3}$,3$\sqrt{3}$].

点评 本题主要考查了正弦定理,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了转化思想和数形结合思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么就称它们为一个逆序.一个排列中逆序的总数就称作这个排列的逆序数.如排列1,3,5,4,2中,3,2;5,4;5,2;4,2为逆序,逆序数是4.现有1~101这101个自然数的排列:1,3,5,7,…,99,101,100,98,…,6,4,2,则此排列的逆序数是(  )
A.2 500B.2 600C.2 700D.2 80

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知三棱柱ABC-A1B1C1的底面为等腰三角形,且平面B1BCC1⊥平面ABC,C1B⊥BC,M是线段AB上的点,且∠ACM=∠BCM=60°,CA=CB=$\frac{{\sqrt{3}}}{3}$C1B.
(Ⅰ)求证:CM⊥AC1
(Ⅱ)求直线CC1与平面B1CM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知复数z=$\frac{1+2i}{{i}^{3}}$,则它的共轭复数$\overline{z}$=-2-i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,四边形ABCD是等腰梯形,AB∥CD,∠ABC=60°,AB=2CB=4,在梯形ACEF中,EF∥AC,且AC=2EF,EC⊥平面ABCD.
(1)求证:面FEB⊥面CEB;
(2)若二面角D-AF-C的大小为$\frac{π}{4}$,求几何体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设点P为函数f(x)=x3-$\frac{1}{4x}$图象上任一点,则f(x)在点P处的切线的倾斜角α的取值范围为(  )
A.[$\frac{π}{3}$,π)B.($\frac{π}{6}$,$\frac{π}{3}$)C.($\frac{π}{6}$,$\frac{π}{2}$)D.[$\frac{π}{3}$,$\frac{π}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设计一个计算1×3×5×7×…×199的算法,并写出程序,画出程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.欧拉公式eθi=cosθ+isinθ(e为自然对数的底数,i为虚数单位)是瑞士著名数学家欧拉发明的,根据欧拉公式可知,复数${e^{\frac{π}{6}i}}$的虚部为(  )
A.$-\frac{1}{2}i$B.$\frac{1}{2}i$C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.一切奇数都不能被2整除,2100+1是奇数,所以2100+1不能被2整除,其演绎推理的“三段论”的形式为一切奇数都不能被2整除,大前提,2100+1是奇数,小前提,所以2100+1不能被2整除.结论,.

查看答案和解析>>

同步练习册答案