精英家教网 > 高中数学 > 题目详情
13.已知单位向量$\overrightarrow{a}$与向量$\overrightarrow{b}$=(1,-1)的夹角为$\frac{π}{4}$,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=1.

分析 由已知求出$|\overrightarrow{b}|$,然后由$|\overrightarrow{a}-\overrightarrow{b}{|}^{2}=(\overrightarrow{a}-\overrightarrow{b})^{2}$结合平面向量的数量积运算求得答案.

解答 解:由$\overrightarrow{b}$=(1,-1),得$|\overrightarrow{b}|=\sqrt{{1}^{2}+(-1)^{2}}=\sqrt{2}$,
又$|\overrightarrow{a}|=1$,$<\overrightarrow{a},\overrightarrow{b}>=\frac{π}{4}$,
∴|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{(\overrightarrow{a}-\overrightarrow{b})^{2}}=\sqrt{|\overrightarrow{a}{|}^{2}-2\overrightarrow{a}•\overrightarrow{b}+|\overrightarrow{b}{|}^{2}}$
=$\sqrt{{1}^{2}-2×1×\sqrt{2}×\frac{\sqrt{2}}{2}+2}=1$=1.
故答案为:1.

点评 本题考查了平面向量的数量积运算,考查了向量模的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.若一个正实数能写成$\sqrt{n+1}$+$\sqrt{n}$(n∈N*)的形式,则称其为“兄弟数”,求证:
(1)若x为“兄弟数”,则x2也为“兄弟数”;
(2)若x为“兄弟数”,k是给定的正奇数,则xk也为“兄弟数”.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\frac{x}{{e}^{x}}$,若a=f(ln2),b=f(ln3),c=f(ln5),则a,b,c的大小关系为(  )
A.a>b>cB.c>a>bC.b>a>cD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某商品的定价,是在进价的基础上增长25%,假定商品的销售运营费用为定价(非折扣价)的8%,那么在不亏损的情况下,下列哪个折扣是最多折扣?(  )
A.九五折B.九折C.八五折D.八折

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知抛物线的顶点在坐标原点,焦点在y轴上,且过点(2,1).
(Ⅰ)求抛物线的标准方程;
(Ⅱ)设直线l:y=kx+t与圆x2+(y+1)2=1相切,且与抛物线交于不同的两点M,N,若△MON的面积为4,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.阅读如图所示的程序框图,运行相应的程序,若输出的结果s=9,则图中菱形内应该填写的内容是(  )
A.n<2B.n<3C.n<4D.a<3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,已知三棱柱ABC-A1B1C1的侧棱与底面垂直,AA1=AB=AC=1,AB⊥AC,M是CC1的中点,N是BC的中点,点P在直线A1B1上,且满足$\overrightarrow{{A}_{1}P}$=λ$\overrightarrow{{A}_{1}{B}_{1}}$.
(1)当λ=1时,求证:直线PN⊥平面AMN;
(2)若平面PMN与平面AA1C1C所成的二面角为45°,试确定点P的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设数列{an}的前n项和Sn=2an-2,数列{bn}满足bn=$\frac{1}{(n+1)lo{g}_{2}{a}_{n}}$
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xOy中,点A的坐标为(0,3),设圆C的半径为,且圆心C在直线l:y=2x-4上.
(Ⅰ)若圆心C又在直线y=x-1上,过点A作圆C的切线,求此切线的方程;
(Ⅱ)若圆C上存在点M,使得|MA|=2|MO|,求圆心C的横坐标的取值范围.

查看答案和解析>>

同步练习册答案