精英家教网 > 高中数学 > 题目详情
1.在平面直角坐标系xOy中,点A的坐标为(0,3),设圆C的半径为,且圆心C在直线l:y=2x-4上.
(Ⅰ)若圆心C又在直线y=x-1上,过点A作圆C的切线,求此切线的方程;
(Ⅱ)若圆C上存在点M,使得|MA|=2|MO|,求圆心C的横坐标的取值范围.

分析 (Ⅰ)联立两直线方程求得圆心C的坐标,则圆的方程可得,设出切线方程,利用点到直线的距离求得k,则直线的方程可得.
(Ⅱ)设出圆心C的坐标,表示出圆的方程,进而根据|MA|=2|MO|,设出M,利用等式关系整理求得M的轨迹方程,进而判断出点M应该既在圆C上又在圆D上,且圆C和圆D有交点.进而确定不等式关系求得a的范围.

解答 M解:(Ⅰ) 由$\left\{\begin{array}{l}{y=2x-4}\\{y=x-1}\end{array}\right.$得圆心C为(3,2),因为圆C的半径为1,
所以圆C的方程为:(x-3)2+(y-2)2=1.
显然切线的斜率一定存在,设所求圆C的切线方程为y=kx+3,即kx-y+3=0.
所以$\frac{|3k-2+3|}{\sqrt{{k}^{2}+1}}$=1,解得k=0或-$\frac{3}{4}$.
则所求圆C的切线方程为:y=3或3x+4y-12=0.
(Ⅱ)因为圆C的圆心在直线y=2x-4上,所以设圆心C为(a,2a-4),
则圆C的方程为:(x-a)2+[y-(2a-4)]2=1.
又|MA|=2|MO|,设m为(x,y),则$\sqrt{{x}^{2}+(y-3)^{2}}$=2$\sqrt{{x}^{2}+{y}^{2}}$.
整理得:x2+(y+1)2=4,设该方程对应的圆为D,
所以点M应该既在圆C上又在圆D上,且圆C和圆D有交点.则|2-1|≤$\sqrt{{a}^{2}+[2a-4)-(-1)]^{2}}$≤|2+1|.
由5a2-12a+8≥0,得a∈R.
由5a2-12a≤0得0≤a≤$\frac{12}{5}$.所以圆心C的横坐标的取值范围为[0,$\frac{12}{5}$].

点评 本题主要考查了直线与圆的方程的应用.考查了学生的分析推理和基本的运算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知单位向量$\overrightarrow{a}$与向量$\overrightarrow{b}$=(1,-1)的夹角为$\frac{π}{4}$,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,三个内角A、B、C的对边分别为a、b、c,已知a=3,b=4,面积S=3$\sqrt{3}$,求边c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的四个顶点按逆时针排列顺序依次为A,B,C,D,若四边形ABCD的内切圆恰好过焦点,则椭圆的离心率e2为(  )
A.$\frac{{3-\sqrt{5}}}{2}$B.$\frac{{3+\sqrt{5}}}{8}$C.$\frac{{\sqrt{5}-1}}{2}$D.$\frac{{1+\sqrt{5}}}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的短轴长是2,离心率是$\frac{{\sqrt{6}}}{3}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)点M是椭圆C上异于其顶点的任意一点,点M关于原点的对称点是点N,点P是直线x+y-3=0上的一点,且△PMN是等边三角形,求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a>b>0,椭圆C1的方程为$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1,双曲线C2的方程为$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1,C1与C2的离心率之积为$\frac{{\sqrt{3}}}{2}$,则C2的渐近线方程为(  )
A.$\sqrt{2}$x±y=0B.x±$\sqrt{2}$y=0C.2x±y=0D.x±2y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知A为椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上的一个动点,直线AB,AC分别过焦点,F1,F2,且与椭圆交于B,C两点,若当AC⊥x轴时,恰好有|AF1|:|AF2|=3:1,则该椭圆的离心率为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆M的中心在坐标原点,焦点在x轴上,焦距为4$\sqrt{3}$,且两准线间距离为$\frac{16\sqrt{3}}{3}$.
(1)求椭圆M的标准方程;
(2)过椭圆M的上顶点A作两条直线分别交椭圆于点B,C(异于点A),且它们的斜率分别为k1,k2,若k1k2=-$\frac{1}{4}$,求证:直线BC恒过一个定点,并求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图过椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点F任作一条与两坐标轴都不垂直的弦AB,若点M在x轴上,且使得MF为△AMB的一条内角平分线,则称点M为该椭圆的“左特征点”,则椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的“左特征点”M的坐标为(  )
A.(-2,0)B.(-3,0)C.(-4,0)D.(-5,0)

查看答案和解析>>

同步练习册答案