精英家教网 > 高中数学 > 题目详情
19.已知f(x)=ax+xlnx(a∈R),曲线y=f(x)在点(1,f(1))处的切线斜率为2.
(Ⅰ)求函数f(x)的极值;
(Ⅱ)若2f(x)一(k+1)x+k>0(k∈Z)对任意x>1都成立,求k的最大值.

分析 (1)由f′(1)=2得a,从而可得f′(x)=lnx+2,在定义域内解不等式f′(x)>0,f′(x)<0可得函数的单调区间,从而求出函数的极值;
(2)不等式整理成k<$\frac{2f(x)-x}{x-1}$,令g(x)=$\frac{x+2xlnx}{x-1}$,只需求出g(x)的最小值即可.

解答 解:(1)f'(x)=a+lnx+1,
∵曲线y=f(x)在点(1,f(1))处的切线斜率为2,
∴f'(1)=a+1=2,∴a=1,
∴f'(x)=lnx+2,
当x∈(0,e-2)时,f'(x)<0,f(x)递减,
当x∈(e-2,+∞)时,f'(x)>0,f(x)递增,
∴f(x)的极小值是f(e-2)=-e-2,无极大值;
∴f(x)的单调递减区间为(0,e-2),单调递增区间为(e-2,+∞);
(2)2f(x)-(k+1)x+k>0,
∴k<$\frac{2f(x)-x}{x-1}$,∴k<$\frac{x+2xlnx}{x-1}$,
令g(x)=$\frac{x+2xlnx}{x-1}$,则g'(x)=$\frac{2x-3-2lnx}{{(x-1)}^{2}}$,
设h(x)=2x-3-2lnx,则h'(x)=2-$\frac{2}{x}$>0,
∴h(x)在(1,+∞)上为增函数,
∵h(2)=1-2ln2<0,h(3)=3-2ln3>0,
∴?x0∈(2,3),且h(x0)=0,
当x∈(1,x0)时,h(x)<0,g′(x)<0,g(x)在(1,x0)上单调递减;
当x∈(x0,+∞)时,h(x)>0,g′(x)>0,g(x)在(x0,+∞)上单调递增.
∴g(x)min=g(x0)=$\frac{{x}_{0}+{2x}_{0}l{nx}_{0}}{{x}_{0}-1}$,
∵h(x0)=2x0-3-2lnx0=0,
∴g(x0)=2x0
∵x0∈(2,3),
∴k的最大值为4.

点评 本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性与最值,解题时合理构造函数是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知cosα=$\frac{\sqrt{2}}{3}$,α∈($\frac{3π}{2}$,2π),则sin($α+\frac{5π}{6}$)的值为(  )
A.$\frac{\sqrt{21}+\sqrt{2}}{6}$B.$\frac{\sqrt{21}-\sqrt{2}}{6}$C.$\frac{-\sqrt{21}+\sqrt{2}}{6}$D.$\frac{-\sqrt{21}-\sqrt{2}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆(x-1)2+y2=R2(R>0)与椭圆$\frac{{x}^{2}}{4}$+y2=1有公共点,求圆的半径R的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平角坐标系xOy中,椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率$e=\frac{1}{2}$,且过点$(0,\sqrt{3})$,椭圆C的长轴的两端点为A,B,点P为椭圆上异于A,B的动点,定直线x=4与直线PA、PB分别交于M,N两点.
(1)求椭圆C的方程;
(2)在x轴上是否存在定点经过以MN为直径的圆,若存在,求定点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆x2+my2=1的焦点在y轴上.
(1)若长轴长是短轴长的2倍.求m的值;
(2)在(1)的条件下,设P为短轴上的右顶点,F1,F2为椭圆的焦点,问△PF1F2能否成为直角三角形,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某公司200名员工中$\frac{90}{100}$的人使用微信,其中每天使用微信时间在一小时内有关60人,其余员工每天使用微信时间在一小时以上.若将员工分成青年(年龄小于40岁)和中年(年龄不小于40岁)二个阶段,那么使用微信的人中$\frac{75}{100}$是青年人.若规定:每天使用微信时间在一小时以上为经常使用微信,那么经常使用微信员工中$\frac{2}{3}$是青年人.
(1)若要调查该公司使用微信的员工经常使用微信与年龄关系,列出2×2列联表
青年人中年人合计
经常使用微信
不经常使用微信
合计
(1)由列联表中所得数据判断是否有$\frac{99.9}{100}$把握认为“经常使用微信年龄有关”.
(2)采用分层抽样方法从“经常使用微信“的人中抽取6人,从这6人中任选2人,求选出2人均是青年人的概率.
P(k2≥k)0.0100.001
k6.63510.828
${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,C,D是直径为AB的半圆上的两个不同的点,AC与BD交于点E,点F在弦BD上,且△ACD∽△BCF,证明:△ABC∽△DFC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设椭圆E1的长半轴长为a1、短半轴长为b1,椭圆E2的长半轴长为a2、短半轴长为b2,若$\frac{{a}_{1}}{{a}_{2}}$=$\frac{{b}_{1}}{{b}_{2}}$,则我们称椭圆E1与椭圆E2是相似椭圆.已知椭圆E:$\frac{x^2}{2}$+y2=1,其左顶点为A、右顶点为B.
(1)设椭圆E与椭圆F:$\frac{x^2}{s}$+$\frac{y^2}{2}$=1是“相似椭圆”,求常数s的值;
(2)设椭圆G:$\frac{x^2}{2}$+y2=λ(0<λ<1),过A作斜率为k1的直线l1与椭圆G只有一个公共点,过椭圆E的上顶点为D作斜率为k2的直线l2与椭圆G只有一个公共点,求|k1k2|的值;
(3)已知椭圆E与椭圆H:$\frac{x^2}{2}$+$\frac{y^2}{t}$=1(t>2)是相似椭圆.椭圆H上异于A、B的任意一点C(x0,y1),且椭圆E上的点M(x0,y2)(y1y2>0)求证:AM⊥BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,c=2$\sqrt{2}$,a>b,C=$\frac{π}{4}$,tanAtanB=6,试求a,b及△ABC的面积.

查看答案和解析>>

同步练习册答案