如图,在直三棱柱
中,AB=BC,D、E分别为
的中点.
(Ⅰ)证明:ED为异面直线BB1与AC1的公垂线;w.w.w.k.s.5.u.c.o.m
(Ⅱ)设AB=1,
,求二面角A1―AD―C1的大小.
证明:(Ⅰ) 设O为AC中点,连接EO,BO,则EO∥=C1C,又C1C∥=B1B,所以EO∥=DB,EOBD为平行四边形,ED∥OB.
∵AB=BC,∴BO⊥AC,
又平面ABC⊥平面ACC1A1,BOÌ面ABC,故BO⊥平面ACC1A1,
∴ED⊥平面ACC1A1,BD⊥AC1,ED⊥CC1,
∴ED⊥BB1,ED为异面直线AC1与BB1的公垂线.……6分
解:(Ⅱ)连接A1E,由AB=1,AA1=AC=可知,A1ACC1为正方形,
∴A1E⊥AC1,又由ED⊥平面ACC1A1和EDÌ平面ADC1知平面
ADC1⊥平面A1ACC1,∴A1E⊥平面ADC1.作EF⊥AD,垂足为F,连接A1F,则A1F⊥AD,∠A1FE为二面角A1-AD-C1的平面角.
由已知AB=ED=1, AA1=AC=
,∴
AE=A1E=1,
EF==
,
tan∠A1FE=
=,∴∠A1FE=60°.w.w.w.k.s.5.u.c.o.m
科目:高中数学 来源:2013届广东省高二下期中理科数学试卷(解析版) 题型:解答题
如图,在直三棱柱
中, AB=1,
,
∠ABC=60
.
(1)证明:
;
(2)求二面角A—
—B的正切值。
![]()
查看答案和解析>>
科目:高中数学 来源:2011-2012学年天津市高三第二次月考文科数学 题型:解答题
(本小题满分13分)如图,在直三棱柱
中,
,
分别为
的中点,四边形
是边长为
的正方形.
(Ⅰ)求证:
平面
;
(Ⅱ)求证:
平面
;
(Ⅲ)求二面角
的余弦值.
![]()
查看答案和解析>>
科目:高中数学 来源:2011-2012学年四川省高三2月月考理科数学 题型:解答题
如图,在直三棱柱
中,
,
,
是
的中点.
(Ⅰ)求证:
∥平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)试问线段
上是否存在点
,使
与
成
角?若存在,确定
点位置,若不存在,说明理由.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com