精英家教网 > 高中数学 > 题目详情

如图,在直三棱柱中,AB=BC,D、E分别为的中点.

(Ⅰ)证明:ED为异面直线BB1与AC1的公垂线;w.w.w.k.s.5.u.c.o.m          

(Ⅱ)设AB=1,,求二面角A1―AD―C1的大小.

 

 

 

 

 

 

证明:(Ⅰ) 设OAC中点,连接EOBO,则EO∥=C1C,又C1C∥=B1B,所以EO∥=DBEOBD为平行四边形,EDOB.   

ABBC,∴BOAC

又平面ABC⊥平面ACC1A1BOÌ面ABC,故BO⊥平面ACC1A1

ED⊥平面ACC1A1BDAC1EDCC1

EDBB1ED为异面直线AC1BB1的公垂线.……6分

解:(Ⅱ)连接A1E,由AB=1,AA1AC=可知,A1ACC1为正方形,

A1EAC1,又由ED⊥平面ACC1A1EDÌ平面ADC1知平面

ADC1⊥平面A1ACC1,∴A1E⊥平面ADC1.作EFAD,垂足为F,连接A1F,则A1FAD,∠A1FE为二面角A1ADC1的平面角.

由已知ABED=1, AA1AC,∴AE=A1E=1,

EF==

tan∠A1FE=,∴∠A1FE=60°.w.w.w.k.s.5.u.c.o.m          

所以二面角A1ADC1为60°.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA1=
2
,M为A1B1的中点,则AM与平面AA1C1C所成角的正切值为
 

查看答案和解析>>

科目:高中数学 来源:2013届广东省高二下期中理科数学试卷(解析版) 题型:解答题

如图,在直三棱柱中, AB=1,

∠ABC=60.

(1)证明:

(2)求二面角A——B的正切值。

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年天津市高三第二次月考文科数学 题型:解答题

(本小题满分13分)如图,在直三棱柱中,分别为的中点,四边形是边长为的正方形.

(Ⅰ)求证:平面

(Ⅱ)求证:平面

(Ⅲ)求二面角的余弦值.

 

 

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年四川省高三2月月考理科数学 题型:解答题

如图,在直三棱柱中,的中点.

(Ⅰ)求证:∥平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)试问线段上是否存在点,使 角?若存在,确定点位置,若不存在,说明理由.

 

 

 

查看答案和解析>>

科目:高中数学 来源:2013届云南省高二9月月考数学试卷 题型:解答题

如图,在直三棱柱中,,点的中点.

求证:(1);(2)平面.

 

 

 

查看答案和解析>>

同步练习册答案