分析 (1)由判别式大于或等于零,求得实数m的取值范围.
(2)令f(x)=4x2-4mx+m+2,则有$\left\{\begin{array}{l}{△=1{6m}^{2}-16(m+2)≥0}\\{\frac{m}{2}≥\frac{1}{2}}\\{f(\frac{1}{2})≥0}\end{array}\right.$,由此求得实数m的取值范围.
(3)根据韦达定理可得α2+β2 =(α+β)2-2αβ=m2-2•$\frac{m+2}{4}$=${(m-\frac{1}{4})}^{2}$-$\frac{17}{16}$,再利用二次函数的性质求得实数m的取值范围.
解答 解:(1)根据α,β是关于x的方程4x2-4mx+m+2=0的两个实根,
可得△=16m2-4×4(m+2)≥0,即 (m-2)(m+1)≥0,
求得 m≤-1或 m≥2.
(2)若α≥$\frac{1}{2}$,β≥$\frac{1}{2}$,令f(x)=4x2-4mx+m+2,则有$\left\{\begin{array}{l}{△=1{6m}^{2}-16(m+2)≥0}\\{\frac{m}{2}≥\frac{1}{2}}\\{f(\frac{1}{2})≥0}\end{array}\right.$,
求得2≤m≤3.
(3)在(2)的条件下,α2+β2 =(α+β)2-2αβ=m2-2•$\frac{m+2}{4}$=${(m-\frac{1}{4})}^{2}$-$\frac{17}{16}$,
故当m=3 时,α2+β2的取得最大值为$\frac{\sqrt{26}}{2}$,当 m=1时,α2+β2的取得最小值为-$\frac{1}{2}$.
点评 本题主要考查一元二次方程根的分布与系数的关系,二次函数的性质,体现了转化的数学思想,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com