精英家教网 > 高中数学 > 题目详情

已知函数.
(Ⅰ)求函数的最小正周期;
(Ⅱ)求函数在区间上的值域.

(Ⅰ);(Ⅱ)的值域为.

解析试题分析:(Ⅰ)先由三角恒等变换得,从而得;(Ⅱ)先由,再由正弦函数的单调性得,从而得的值域为.
试题解析:(I) 

                                 4分
所以,周期.                                6分
(II)∵,∴                  8分
,∴的值域为                  12分
考点:1.三角恒等变换;2.三角函数的单调性;3.三角函数的值域

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数
(1)求函数的最小正周期;
(2)记的内角A、B、C的对边分别为,若,求角B的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角所对的边为,且满足
(1)求角的值;
(2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设△ABC的三边a,b,c所对的角分别为A,B,C,
(Ⅰ)求A的值;
(Ⅱ)求函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,且
(1)求函数的单调增区间;
(2)三角形ABC中,边分别为角的对边,若,B=,且, 求三角形ABC的边的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,设函数的图象关于直线对称,其中常数

(Ⅰ)求的最小正周期;
(Ⅱ)将函数的图像向左平移个单位,得到函数的图像,用五点法作出函数在区间的图像.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(1)求的值;
(2)若是第三象限的角,化简三角式,并求值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的单调递增区间;
(2)在中,内角A,B,C的对边分别为,已知成等差数列,且,求边的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为锐角,且,函数,数列{}的首项.
(1)求函数的表达式;
(2)求数列的前项和.

查看答案和解析>>

同步练习册答案