精英家教网 > 高中数学 > 题目详情

中,角所对的边为,且满足
(1)求角的值;
(2)若,求的取值范围.

(1);(2).

解析试题分析:本题考查解三角形中的正弦定理、二倍角公式、二角和与差的正余弦公式及求三角函数最值等基础知识,考查基本运算能力.第一问,先用倍角公式和两角和与差的余弦公式将表达式变形,解方程,在三角形内求角;第二问,利用正弦定理得到边和角的关系代入到所求的式子中,利用两角和与差的正弦公式展开化简表达式,通过得到角的范围,代入到表达式中求值域.
试题解析:(1)由已知
,            4分
化简得,故.            6分
(2)由正弦定理,得

                                    8分
因为,所以,            10分
所以.               12分
考点:1.倍角公式;2.两角和与差的余弦公式;3.正弦公式;4.求三角函数的值域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在△ABC中,角A,B,C所对的边分别为,已知函数 R).
(Ⅰ)求函数的最小正周期和最大值;
(Ⅱ)若函数处取得最大值,且,求的面积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象的一部分如图所示.

(1)求函数的解析式;
(2)当时,求函数的最大值与最小值及相应的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知三点.
(1)求向量和向量的坐标;
(2)设,求的最小正周期;
(3)求的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

ABC中,内角A,B,C的对边分别为a,b,c.
已知.
(Ⅰ)求的值;  (Ⅱ)若,求ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的最小正周期为
(I)求值及的单调递增区间;
(II)在△中,分别是三个内角所对边,若,求的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数的最大值为3,其图像相邻两条对称轴之间的距离为.
(1)求函数f(x)的解析式;
(2)设,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求函数的最小正周期;
(Ⅱ)求函数在区间上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知分别是的三个内角的对边,.
(Ⅰ)求角的大小;
(Ⅱ)求函数的值域.

查看答案和解析>>

同步练习册答案