精英家教网 > 高中数学 > 题目详情

已知函数的最小正周期为
(I)求值及的单调递增区间;
(II)在△中,分别是三个内角所对边,若,求的大小.

(I)的单调递增区间为;(II)

解析试题分析:(I)由已知首先利用降幂扩角和倍角公式:,将函数化为一个角的三角函数,利用公式值,利用整体思想求的单调递增区间;(II)由(I)及已知,得,由此可以求得角.再利用正弦定理,得,结合已知条件,可求得角的大小.
试题解析:(I)最小正周期为单调递增区间为
(II)由正弦定理

考点:1.三角恒等变换(倍角公式);2.三角函数的周期和单调性;3.正弦定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知锐角中,角所对的边分别为,已知
(Ⅰ)求的值;
(Ⅱ)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,设是单位圆和轴正半轴的交点,是单位圆上的两点,是坐标原点,

(1)若,求的值;
(2)设函数,求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,角A、B、C的对边分别为a、b、c,.
(1)求cosC;(2)若

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角所对的边为,且满足
(1)求角的值;
(2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象(部分)如图所示.

(1)试确定的解析式;
(2)若,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设△ABC的三边a,b,c所对的角分别为A,B,C,
(Ⅰ)求A的值;
(Ⅱ)求函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,设函数的图象关于直线对称,其中常数

(Ⅰ)求的最小正周期;
(Ⅱ)将函数的图像向左平移个单位,得到函数的图像,用五点法作出函数在区间的图像.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数>0,>0,的图像与轴的交点为(0,1),它在轴右侧的第一个最高点和第一个最低点的坐标分别为

(1)求的解析式及的值;
(2)若锐角满足,求的值.

查看答案和解析>>

同步练习册答案