精英家教网 > 高中数学 > 题目详情

在△ABC中,角A、B、C的对边分别为a、b、c,.
(1)求cosC;(2)若

(I)  (II)

解析试题分析:(I)利用同角三角函数的基本关系式,再由可得
(II)先由向量的数量积得的关系,再根据余弦定理求
试题解析:(I)

(II)

考点:1、同角三角函数的基本关系式;2、向量的数量积;3、余弦定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知以角为钝角的的三角形内角的对边分别为,且垂直.
(1)求角的大小;
(2)求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.
(1)求的取值范围;
(2)设,试问当变化时,有没有最小值,如果有,求出这个最小值,如果没有,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△中,角的对边分别为.
(Ⅰ)求角的大小;
(Ⅱ)求函数的值域

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知三点.
(1)求向量和向量的坐标;
(2)设,求的最小正周期;
(3)求的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量函数.
(1)求函数的最小正周期及单调递减区间;
(2)在锐角三角形ABC中,的对边分别是,且满足 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的最小正周期为
(I)求值及的单调递增区间;
(II)在△中,分别是三个内角所对边,若,求的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,且
(1)求函数的单调增区间;
(2)证明无论为何值,直线与函数的图象不相切.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的一系列对应值如下表:



0





0
1

0

0
(1)求的解析式;
(2)若在中,,求的值.

查看答案和解析>>

同步练习册答案