已知以角为钝角的的三角形内角的对边分别为、、,,且与垂直.
(1)求角的大小;
(2)求的取值范围
(1);(2).
解析试题分析:(1)观察要求的结论,易知要列出的边角之间的关系,题中只有与垂直提供的等量关系是,即,这正是我们需要的边角关系.因为要求角,故把等式中的边化为角,我们用正弦定理,,,代入上述等式得
,得出,从而可求出角;(2)要求的范围,式子中有两个角不太好计算,可以先把两个角化为一个角,由(1),从而,再所其化为一个三角函数(这是解三角函数问题常用方法),下面只要注意这个范围即可.
试题解析:1)∵垂直,∴(2分)
由正弦定理得(4分)
∵,∴,(6分) 又∵∠B是钝角,∴∠B (7分)
(2) (3分)
由(1)知A∈(0,),, (4分)
,(6分) ∴的取值范围是 (7分)
考点:(1)向量的垂直,正弦定理;(2)三角函数的值域.
科目:高中数学 来源: 题型:解答题
函数.
(Ⅰ)求函数的单调递减区间;
(Ⅱ)将的图像向左平移个单位,再将得到的图像横坐标变为原来的2倍(纵坐标不变)后得到的图像,若的图像与直线交点的横坐标由小到大依次是求数列的前2n项的和。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com