两平行直线x+3y-4=0与2x+6y-9=0的距离为________.
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第5课时练习卷(解析版) 题型:解答题
已知以点C
(t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点.
(1)求证:△AOB的面积为定值;
(2)设直线2x+y-4=0与圆C交于点M、N,若|OM|=|ON|,求圆C的方程;
(3)在(2)的条件下,设P、Q分别是直线l:x+y+2=0和圆C的动点,求|PB|+|PQ|的最小值及此时点P的坐标.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第4课时练习卷(解析版) 题型:解答题
已知t∈R,圆C:x2+y2-2tx-2t2y+4t-4=0.
(1)若圆C的圆心在直线x-y+2=0上,求圆C的方程;
(2)圆C是否过定点?如果过定点,求出定点的坐标;如果不过定点,说明理由.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第3课时练习卷(解析版) 题型:解答题
已知直线l:x+2y-2=0,试求:
(1) 点P(-2,-1)关于直线l的对称点坐标;
(2) 直线l1:y=x-2关于直线l对称的直线l2的方程;
(3) 直线l关于点(1,1)对称的直线方程.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第3课时练习卷(解析版) 题型:解答题
两条直线l1:(m+3)x+2y=5-3m,l2:4x+(5+m)y=16,分别求满足下列条件的m的值.
(1) l1与l2相交;
(2) l1与l2平行;
(3) l1与l2重合;
(4) l1与l2垂直.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第11课时练习卷(解析版) 题型:解答题
已知曲线C上动点P(x,y)到定点F1(
,0)与定直线l1∶x=
的距离之比为常数
.
(1)求曲线C的轨迹方程;
(2)以曲线C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与曲线C交于点M与点N,求
·
的最小值,并求此时圆T的方程.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第11课时练习卷(解析版) 题型:解答题
在平面直角坐标系xOy中,已知定点A(-4,0)、B(4,0),动点P与A、B连线的斜率之积为-
.
(1)求点P的轨迹方程;
(2)设点P的轨迹与y轴负半轴交于点C.半径为r的圆M的圆心M在线段AC的垂直平分线上,且在y轴右侧,圆M被y轴截得的弦长为
r.
(ⅰ)求圆M的方程;
(ⅱ)当r变化时,是否存在定直线l与动圆M均相切?如果存在,求出定直线l的方程;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第10课时练习卷(解析版) 题型:解答题
如图,已知椭圆C的方程为
+y2=1,A、B是四条直线x=±2,y=±1所围成的矩形的两个顶点.
![]()
(1)设P是椭圆C上任意一点,若
=m
+n
,求证:动点Q(m,n)在定圆上运动,并求出定圆的方程;
(2)若M、N是椭圆C上两个动点,且直线OM、ON的斜率之积等于直线OA、OB的斜率之积,试探求△OMN的面积是否为定值,并说明理由.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年陕西西工大附中高三上学期第四次适应性训练文数学卷(解析版) 题型:解答题
如图甲,
是边长为6的等边三角形,
分别为
靠近
的三等分点,点
为边
边的中点,线段
交线段
于点
.将
沿
翻折,使平面
平面
,连接
,形成如图乙所示的几何体.
![]()
(1)求证:
平面![]()
(2)求四棱锥
的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com