精英家教网 > 高中数学 > 题目详情
(本小题满分14分)
如图,直四棱柱的底面是菱形,,点分别是上、下底面菱形的对角线的交点.⑴求证:∥平面;⑵求点到平面的距离.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在长方体中,,且.

(Ⅰ)求证:对任意,总有
(Ⅱ)若,求二面角的余弦值;
(Ⅲ)是否存在,使得在平面上的射影平分?若存在,求出的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图,在直三棱柱中,的中点.

(Ⅰ)在线段上是否存在一点,使得⊥平面?若存在,找出点的位置幷证明;若不存在,请说明理由;
(Ⅱ)求平面和平面所成角的大小

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,正方形ADEF所在平面和等腰梯形所在平面ABCD垂直,已知BC=2AD=4,
(I)求证:面ABF;
(II)求异面直线BE与AF所成的角;
(III)求该几何体的表面积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分) 已知在正方体ABCD —A1B1C1D1中,E、F分别是D1D、BD的中点,G在棱CD上,且CG =

(1)求证:EF⊥B1C;
(2)求EF与G C1所成角的余弦值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在棱长为的正方体中,是线段 中点,.
(Ⅰ) 求证:^;(Ⅱ) 求证:∥平面
(Ⅲ) 求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在空间四边形ABCD中,AD=BC=2,E,F分别是AB,CD的中点,若EF=,则异面直线AD与BC所成的角为_______

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知一四棱锥的三视图,E是侧棱PC上的动点.
(1)求四棱锥的体积;
(2)若E点分PC为PE:EC=2:1,求点P到平面BDE的距离;
(3)若E点为PC的中点,求二面角D-AE-B的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若球O的球面上共有三点A、B、C,其中任意两点间的球面距离都等于大圆周长的经过A、B、C这三点的小圆周长为,则球O的体积为       .

查看答案和解析>>

同步练习册答案