精英家教网 > 高中数学 > 题目详情
如图,已知三棱柱ABC-A1B1C1中,D,E,F分别为AA1,CC1,AB的中点,M为BE的中点.求证:C1D∥平面B1FM.
考点:直线与平面平行的判定
专题:空间位置关系与距离
分析:连接AE,先证明出FM∥AE,进而证明出C1D∥AE,最后利用线面平行的判定定理证明出C1D∥平面B1FM.
解答: 证明:连接AE,
∵M,F为中点,
∴FM∥AE,
∵D,E为中点,
∴C1D∥AE,
∴FM∥C1D,
∵FM?平面B1FM,CD?平面B1FM,
∴C1D∥平面B1FM.
点评:本题主要考查了线面平行的判定定理的应用.证明的关键是找到或作出与平面中的线平行的线.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知{an}是等比数列,a4•a7=-512,a3+a8=124,且公比为整数,则公比q为(  )
A、2
B、-2
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2,点P为上顶点,圆 O:x2+y2=b2将椭圆C的长轴三等分,直线l:y=mx-
4
5
(m≠0)与椭圆C交于A、B两点,PA、PB与圆O交于M、N两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求证△APB为直角三角形;
(Ⅲ)设直线MN的斜率为n,求证:
m
n
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列an=
8n
(2n-1)2×(2n+1)2
(n∈N*),其前n项和为Sn.经计算得:S1=
8
9
,S2=
24
25
,S3=
48
49
,S4=
80
81

(Ⅰ)观察上述结果,猜想计算Sn的公式;
(Ⅱ)用数学归纳法证明所提猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,已知圆A的圆心为(4,0),半径为4,点M为圆A上异于极点O的动点,求弦OM中点的轨迹的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=
3
,点F是PD中点,点E是DC边上的任意一点.
(Ⅰ)当点E为DC边的中点时,判断EF与平面PAC的位置关系,并加以证明;
(Ⅱ)证明:无论点E在DC边的何处,都有AF⊥FE;
(Ⅲ)求三棱锥B-AFE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在五面体ABCDEF中,已知DE⊥平面ABCD,AD∥BC,∠BAD=60°AB=2,DE=EF=1.
(1)求证:BC∥EF;
(2)求三棱锥B-DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足:a1=2,a2=8,an+2=(2+i2n)an+1+i2n,(i是虚数单位,n=1,2,3,…).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足bn=na2n,n∈N+,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1 C1中,侧棱AA1⊥平面ABC,AB=BC=AA1=2,AC=2
2
,E,F分别是A1B,BC的中点.
(Ⅰ)证明:EF∥平面A AlClC;
(Ⅱ)证明:平面A1ABB1⊥平面BEC.

查看答案和解析>>

同步练习册答案