精英家教网 > 高中数学 > 题目详情
设数列{an}满足:a1=2,a2=8,an+2=(2+i2n)an+1+i2n,(i是虚数单位,n=1,2,3,…).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足bn=na2n,n∈N+,求数列{bn}的前n项和Tn
考点:数列的求和,复数代数形式的混合运算
专题:等差数列与等比数列
分析:(Ⅰ)当n是奇数时,an=
a
 
1
=2
,当n是偶数时,an+2=3an+2,从而推导出{an+1}是以a2+1=9为首项,3为公比的等比数列,由此求出an=
2,n是奇数
3
n
2
+1
-1,n是偶数

(Ⅱ)bn=na2n=n(3n+1-1)=n•3n+1-n,由此利用分组求和法和错位相减法能求出数列{bn}的前n项和Tn
解答: 解:(Ⅰ)∵数列{an}满足:a1=2,a2=8,an+2=(2+i2n)an+1+i2n
①当n是奇数时,an=
a
 
1
=2

②当n是偶数时,an+2=3an+2,∴an+2+1=3(an+1),
{an+1}是以a2+1=9为首项,3为公比的等比数列,
an+1=9•3
n
2
-1
=3 
n
2
+1

an=3
n
2
+1
-1

由①②知,an=
2,n是奇数
3
n
2
+1
-1,n是偶数

(Ⅱ)由(Ⅰ)知a2n=3n+1-1,
∴bn=na2n=n(3n+1-1)=n•3n+1-n,
设{n•3n+1}的前n项和为Sn
Sn=1•32+2•33+3•34+…+n•3n+1,①
3Sn=1•33+2•34+3•35+…+n•3n+2,②
①-②,得-2Sn=32+33+34…+3n+1-n•3n+2
=
32(1-3n)
1-3
-n•3n+2
Sn=
9
4
+
2n-1
4
3n+2

Tn=
9
4
+
2n-1
4
3n+2-
n(n+1)
2
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意分组求和法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

己知函数f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,△EFG是边长为2的等边三角形,则f(-1)的值为(  )
A、-
3
2
B、-
6
2
C、
3
D、-
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三棱柱ABC-A1B1C1中,D,E,F分别为AA1,CC1,AB的中点,M为BE的中点.求证:C1D∥平面B1FM.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a
x
+2lnx-1,a∈R.
(Ⅰ)当a=1时,求函数f(x)的单调区间;
(Ⅱ)求函数f(x)在区间(0,e]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
a
x
(a>0).
(1)当a=1,求f(x)在(2,2+△x)上的平均变化率;
(2)当a=4,求其斜率为0的切线方程;
(3)求证:“对勾函数”图象上的各点处切线的斜率小于1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点分别为F1,F2,离心率为为
2
2
.点P在椭圆E上,且△PF1F2的周长为4
2
+4.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若直线l:y=x+m与椭圆E交于A,B两点,O为坐标原点,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
ex-e-x
2
,g(x)=
ex+e-x
2
,求证:g(2x)=[g(x)]2+[f(x)]2

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥P-ABCD中,侧棱PD⊥底面ABCD,底面ABCD是正方形,若PD=DA,M是PC的中点.
(Ⅰ)证明:PA∥平面BDM
(Ⅱ)若PD=
2
,求点C到平面BDM的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+x2-xlna(a>1)
(Ⅰ)若函数y=|f(x)-b+
1
b
|-3有四个零点,求b的取值范围;
(Ⅱ)若对于任意的x1,x2∈[-1,1]时,都有|f(x1)-f(x2)|≤e2-2(其中e是自然对数的底数)恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案