精英家教网 > 高中数学 > 题目详情

设函数f(x)=x+的图象为C1,C1关于点A(2,1)对称的图象为C2,C2对应的函数为g(x).

(1)求g(x)的解析式;

(2)若直线y=m与C2只有一个交点,求m的值和交点坐标.

 

(1)g(x)=x-2+.

(2)当m=0时,经检验合理,交点为(3,0);

当m=4时,经检验合理,交点为(5,4).

【解析】【解析】
(1)设点P(x,y)是C2上的任意一点,则P(x,y)关于点A(2,1)对称的点为P′(4-x,2-y),代入f(x)=x+

可得2-y=4-x+,即y=x-2+

∴g(x)=x-2+.

(2)由

消去y得x2-(m+6)x+4m+9=0,

Δ=[-(m+6)]2-4(4m+9),

∵直线y=m与C2只有一个交点,

∴Δ=0,解得m=0或m=4.

当m=0时,经检验合理,交点为(3,0);

当m=4时,经检验合理,交点为(5,4).

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:3-5两角和与差的正弦、余弦和正切(解析版) 题型:解答题

已知函数f(x)=-sin(2x+)+6sinxcosx-2cos2x+1,x∈R.

(1)求f(x)的最小正周期;

(2)求f(x)在区间[0,]上的最大值和最小值.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-9函数模型及其应用(解析版) 题型:选择题

牛奶保鲜时间因储藏温度的不同而不同,假定保鲜时间与储藏温度的关系为指数型函数y=kax,若牛奶在0℃的冰箱中,保鲜时间约为100 h,在5℃的冰箱中,保鲜时间约为80 h,那么在10℃时保鲜时间约为(  )

A.49 h B.56 h C.64 h D.72 h

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-8函数与方程(解析版) 题型:解答题

已知二次函数f(x)=x2+2bx+c(b、c∈R).

(1)若f(x)≤0的解集为{x|-1≤x≤1},求实数b、c的值;

(2)若f(x)满足f(1)=0,且关于x的方程f(x)+x+b=0的两个实数根分别在区间(-3,-2),(0,1)内,求实数b的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-8函数与方程(解析版) 题型:选择题

直线y=x与函数f(x)=的图象恰有三个公共点,则实数m的取值范围是(  )

A.[-1,2) B.[-1,2] C.[2,+∞) D.(-∞,-1]

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-7函数的图象(解析版) 题型:解答题

已知不等式x2-logax<0,当x∈(0,)时恒成立,求实数a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-7函数的图象(解析版) 题型:选择题

函数y=+sinx的图象大致是(  )

 

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-6对数与对数函数(解析版) 题型:选择题

函数y=(-x2+6x)的值域(  )

A.(0,6) B.(-∞,-2] C.[-2,0) D.[-2,+∞)

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-3函数的奇偶性与周期性(解析版) 题型:选择题

设偶函数f(x)对任意x∈R都有f(x+3)=-,且当x∈[-3,-2]时,f(x)=4x,则f(107.5)=(  )

A.10 B. C.-10 D.-

 

查看答案和解析>>

同步练习册答案