精英家教网 > 高中数学 > 题目详情

【题目】为了响应国家号召,某校组织部分学生参与了垃圾分类,从我做起的知识问卷作答,并将学生的作答结果分为合格不合格两类与问卷的结果有关?

不合格

合格

男生

14

16

女生

10

20

1)是否有90%以上的把握认为性别问卷的结果有关?

2)在成绩合格的学生中,利用性别进行分层抽样,共选取9人进行座谈,再从这9人中随机抽取5人发送奖品,记拿到奖品的男生人数为X,求X的分布列及数学期望

附:

0100

0050

0010

0001

2703

3841

6635

10828

【答案】(1)没有90%的把握认为性别问卷的结果有关;(2)分布列见解析,

【解析】

1)根据独立性检验的思想即可判断.

2)依题意,成绩合格的男生抽取4人,成绩合格的女生抽取5人,X的可能取值为,求出各随机变量的概率,列出分布列即可求出期望.

1)完善列联表如下所示:

不合格

合格

合计

男生

14

16

30

女生

10

20

30

合计

24

36

60

故没有90%的把握认为性别问卷的结果有关.

2)依题意,成绩合格的男生抽取4人,成绩合格的女生抽取5人,故X的可能取值为

,,,

,

X的分布列为:

0

1

2

3

4

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线C,过抛物线焦点F的直线交抛物线CAB两点,P是抛物线外一点,连接分别交抛物线于点CD,且,设的中点分别为MN.

1)求证:轴;

2)若,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且离心率为.

1)求椭圆的方程;

2)已知圆方程为,过圆上任意一点作圆的切线,切线与椭圆交于两点,为坐标原点,设的中点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

如图,已知是以的直角三角形铁皮,米,分别是边上不与端点重合的动点,且.现将铁皮沿折起至的位置,使得平面平面,连接,如图所示.现要制作一个四棱锥的封闭容器,其中铁皮和直角梯形铁皮分别是这个封闭容器的一个侧面和底面,其他三个侧面用相同材料的铁皮无缝焊接密封而成(假设制作过程中不浪费材料,且铁皮厚度忽略不计).

1)若边的中点,求制作三个新增侧面的铁皮面积是多少平方米?

2)求这个封闭容器的最大体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求在区间上的最大值;

2)若过点存在3条直线与曲线相切,求的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前n项和为,已知,,.

(1)证明:为等比数列,求出的通项公式;

(2)若,求的前n项和,并判断是否存在正整数n使得成立?若存在求出所有n值;若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】fx),gx)分别是定义在R上的奇函数和偶函数,fx),g'x)为其导函数,当x0时,fxgx+fxg'x)<0g(﹣3)=0,则使得不等式fxgx)<0成立的x的取值范围是(

A.(﹣,﹣3B.(﹣3,0C.0,3D.3,+∞

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图一,在直角梯形中,分别为的三等分点,, ,若沿着折叠使得点重合,如图二所示,连结.

1)求证:平面平面

2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市近郊有一块大约的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米.

1)分别用表示的函数关系式,并给出定义域;

2)怎样设计能使取得最大值,并求出最大值.

查看答案和解析>>

同步练习册答案