精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)求在区间上的最大值;

2)若过点存在3条直线与曲线相切,求的取值范围;

【答案】12

【解析】

1)求,令,求出极值点,极值和区间端点的函数值,即求最大值;

2)设出切点,写出切线方程,把点的坐标代入切线方程,得.,则过点存在3条直线与曲线相切等价于3个不同的零点”.,判断的单调性,即可求解.

1)由.

,得.

因为

所以在区间上的最大值为.

2)设过点的直线与曲线相切于点

,且切线斜率为

所以切线方程为

因此

整理得.

过点存在3条直线与曲线相切等价于3个不同的零点”.

.

变化时,的变化情况如下:

0

1

+

0

-

0

+

所以,的极大值,

的极小值.

,即时,

在区间上分别至多有1个零点,

至多有2个零点.

,即时,

在区间上分别至多有1个零点,

所以至多有2个零点.

,即时,

因为

所以分别在区间上恰有1个零点.

由于在区间上单调,

所以分别在区间上恰有1个零点.

综上可知,当过点存在3条直线与曲线相切时,的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,直线经过点,倾斜角为,以原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为曲线.

)写出直线的参数方程及曲线的普通方程;

)求直线和曲线的两个交点到点的距离的和与积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,点分别是的中点,点的重心.

1)证明:平面

2)若平面平面,求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有六名同学参加演讲比赛,编号分别为123456,比赛结果设特等奖一名,四名同学对于谁获得特等奖进行预测.说:不是1号就是2号获得特等奖;说:3号不可能获得特等奖;说:456号不可能获得特等奖;说:能获得特等奖的是456号中的一个.公布的比赛结果表明,中只有一个判断正确.根据以上信息,获得特等奖的是( )号同学.

A.1B.2C.3D.456号中的一个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴长为2,离心率为分别是椭圆的右顶点和下顶点.

1)求椭圆的标准方程;

2)已知是椭圆内一点,直线的斜率之积为,直线分别交椭圆于两点,记的面积分别为.

①若两点关于轴对称,求直线的斜率;

②证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了响应国家号召,某校组织部分学生参与了垃圾分类,从我做起的知识问卷作答,并将学生的作答结果分为合格不合格两类与问卷的结果有关?

不合格

合格

男生

14

16

女生

10

20

1)是否有90%以上的把握认为性别问卷的结果有关?

2)在成绩合格的学生中,利用性别进行分层抽样,共选取9人进行座谈,再从这9人中随机抽取5人发送奖品,记拿到奖品的男生人数为X,求X的分布列及数学期望

附:

0100

0050

0010

0001

2703

3841

6635

10828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定椭圆C:(),称圆心在原点O,半径为的圆是椭圆C的“卫星圆”.若椭圆C的离心率,点C上.

(1)求椭圆C的方程和其“卫星圆”方程;

(2)点P是椭圆C的“卫星圆”上的一个动点,过点P作直线,使得,与椭圆C都只有一个交点,且,分别交其“卫星圆”于点M,N,证明:弦长为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体,点 分别是线段 上的动点,观察直线 .给出下列结论:

①对于任意给定的点,存在点,使得

②对于任意给定的点,存在点,使得

③对于任意给定的点,存在点,使得

④对于任意给定的点,存在点,使得

其中正确结论的个数是( ).

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个口袋内有个不同的红球,个不同的白球,

(1)从中任取个球,红球的个数不比白球少的取法有多少种?

(2)若取一个红球记分,取一个白球记分,从中任取个球,使总分不少于分的取法有多少种?

查看答案和解析>>

同步练习册答案