精英家教网 > 高中数学 > 题目详情

【题目】如图,已知抛物线C,过抛物线焦点F的直线交抛物线CAB两点,P是抛物线外一点,连接分别交抛物线于点CD,且,设的中点分别为MN.

1)求证:轴;

2)若,求面积的最小值.

【答案】1)证明见解析(2

【解析】

1)设直线的方程为,联立直线方程和抛物线方程,消去后利用韦达定理及中点坐标公式即可求得,即可求得轴;

2)根据向量的坐标运算及点在抛物线上,即可求得,根据三角形的面积公式即可求得面积的最小值.

1)抛物线C的焦点,设

直线的方程为

,消去x,整理得

,因为

所以,即

,所以轴.

2)由(1)可知,,则

,由,得

代入抛物线,得到

同理

所以为方程

,所以

MNP三点共线,

,所以

所以

面积的最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆x轴负半轴交于,离心率.

1)求椭圆C的方程;

2)设直线与椭圆C交于两点,连接AM,AN并延长交直线x=4两点,若,直线MN是否恒过定点,如果是,请求出定点坐标,如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)设函数.

(Ⅰ)讨论函数的单调性;

(Ⅱ)当函数有最大值且最大值大于时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,焦点在轴上的椭圆与焦点在轴上的椭圆都过点中心都在坐标原点,且椭圆的离心率均为

求椭圆与椭圆的标准方程;

Ⅱ)过点M的互相垂直的两直线分别与交于点A,B(点A、B不同于点M),当的面积取最大值时,求两直线MA,MB斜率的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,直线经过点,倾斜角为,以原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为曲线.

)写出直线的参数方程及曲线的普通方程;

)求直线和曲线的两个交点到点的距离的和与积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有两个调查抽样:(1)某班为了了解班级学生在家表现情况决定从10名家长中抽取3名参加座谈会;(2)某研究部门在高考后从2000名学生(其中文科400名,理科1600名)中抽取200名考生作为样本调查数学学科得分情况.

给出三种抽样方法:Ⅰ.简单随机抽样法;Ⅱ.系统抽样法;Ⅲ.分层抽样法.

则问题(1)、(2)选择的抽样方法合理的是(

A.1)选,(2)选B.1)选,(2)选

C.1)选,(2)选D.1)选,(2)选

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了迎接全国文明城市复检,绵阳某中学组织了本校1000名学生进行社会主义核心价值观、文明常识等内容测试。统计测试成绩数据得到如图所示的频率分布直方图,已知,满分100.

1)求测试分数在的学生人数;

2)求这1000名学生测试成绩的平均数以及中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点P在曲线yx2上,从原点向A(2,4)移动,如果直线OP,曲线yx2及直线x=2所围成的面积分别记为S1S2.

(1)当S1S2时,求点P的坐标;

(2)当S1S2有最小值时,求点P的坐标和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了响应国家号召,某校组织部分学生参与了垃圾分类,从我做起的知识问卷作答,并将学生的作答结果分为合格不合格两类与问卷的结果有关?

不合格

合格

男生

14

16

女生

10

20

1)是否有90%以上的把握认为性别问卷的结果有关?

2)在成绩合格的学生中,利用性别进行分层抽样,共选取9人进行座谈,再从这9人中随机抽取5人发送奖品,记拿到奖品的男生人数为X,求X的分布列及数学期望

附:

0100

0050

0010

0001

2703

3841

6635

10828

查看答案和解析>>

同步练习册答案