精英家教网 > 高中数学 > 题目详情

【题目】设点P在曲线yx2上,从原点向A(2,4)移动,如果直线OP,曲线yx2及直线x=2所围成的面积分别记为S1S2.

(1)当S1S2时,求点P的坐标;

(2)当S1S2有最小值时,求点P的坐标和最小值.

【答案】(1),(2)

【解析】

试题(1)可考虑用定积分求两曲线围成的封闭图形面积,直线OP的方程为y=tx,则S1为直线OP与曲线y=x2

x(0,t)时所围面积,所以,S1=∫0t(tx﹣x2)dx,S2为直线OP与曲线y=x2x(t,2)时所围面积,所以,

S2=∫t2(x2﹣tx)dx,再根据S1=S2就可求出t值.

(Ⅱ)由(2)可求当S1+S2,化简后,为t的三次函数,再利用导数求最小值,以及相应的x值,就可求出P点坐标为多少时,S1+S2有最小值.

试题解析:

1)设点P的横坐标为t(0t2),则P点的坐标为(t,t2),

直线OP的方程为y=tx

S1=∫0t(tx﹣x2)dx=,S2=∫t2(x2﹣tx)dx=

因为S1=S2,,所以t=,点P的坐标为

(2)S=S1+S2==

S=t2﹣2,令S'=0t2﹣2=0,t=

因为0t时,S'0;t2时,S'0

所以,当t=时,Smin=,P点的坐标为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,椭圆 的左焦点为,右顶点为,上顶点为

1)已知椭圆的离心率为,线段中点的横坐标为,求椭圆的标准方程;

2)已知△外接圆的圆心在直线上,求椭圆的离心率的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线C,过抛物线焦点F的直线交抛物线CAB两点,P是抛物线外一点,连接分别交抛物线于点CD,且,设的中点分别为MN.

1)求证:轴;

2)若,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《算法统宗》全称《新编直指算法统宗》,是屮国古代数学名著,程大位著.书中有如下问题:“今有五人均银四十两,甲得十两四钱,戊得五两六钱.问:次第均之,乙丙丁各该若干?”意思是:有5人分40两银子,甲分104钱,戊分56钱,且相邻两项差相等,则乙丙丁各分几两几钱?(注:1两等于10钱)(

A.乙分8两,丙分8两,丁分8B.乙分82钱,丙分8两,丁分78

C.乙分92钱,丙分8两,丁分68D.乙分9两,丙分8两,丁分7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】7张卡片分别写有数字从中任取4张,可排出不同的四位数的个数是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为1的正方体中,分别为棱的中点.为面对角线上任一点,则下列说法正确的是(

A.平面内存在直线与平行

B.平面截正方体所得截面面积为

C.直线所成角可能为60°

D.直线所成角可能为30°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且离心率为.

1)求椭圆的方程;

2)已知圆方程为,过圆上任意一点作圆的切线,切线与椭圆交于两点,为坐标原点,设的中点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

如图,已知是以的直角三角形铁皮,米,分别是边上不与端点重合的动点,且.现将铁皮沿折起至的位置,使得平面平面,连接,如图所示.现要制作一个四棱锥的封闭容器,其中铁皮和直角梯形铁皮分别是这个封闭容器的一个侧面和底面,其他三个侧面用相同材料的铁皮无缝焊接密封而成(假设制作过程中不浪费材料,且铁皮厚度忽略不计).

1)若边的中点,求制作三个新增侧面的铁皮面积是多少平方米?

2)求这个封闭容器的最大体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图一,在直角梯形中,分别为的三等分点,, ,若沿着折叠使得点重合,如图二所示,连结.

1)求证:平面平面

2)求点到平面的距离.

查看答案和解析>>

同步练习册答案