【题目】设点P在曲线y=x2上,从原点向A(2,4)移动,如果直线OP,曲线y=x2及直线x=2所围成的面积分别记为S1、S2.
(1)当S1=S2时,求点P的坐标;
(2)当S1+S2有最小值时,求点P的坐标和最小值.
【答案】(1),(2),
【解析】
试题(1)可考虑用定积分求两曲线围成的封闭图形面积,直线OP的方程为y=tx,则S1为直线OP与曲线y=x2
当x∈(0,t)时所围面积,所以,S1=∫0t(tx﹣x2)dx,S2为直线OP与曲线y=x2当x∈(t,2)时所围面积,所以,
S2=∫t2(x2﹣tx)dx,再根据S1=S2就可求出t值.
(Ⅱ)由(2)可求当S1+S2,化简后,为t的三次函数,再利用导数求最小值,以及相应的x值,就可求出P点坐标为多少时,S1+S2有最小值.
试题解析:
(1)设点P的横坐标为t(0<t<2),则P点的坐标为(t,t2),
直线OP的方程为y=tx
S1=∫0t(tx﹣x2)dx=,S2=∫t2(x2﹣tx)dx=,
因为S1=S2,,所以t=,点P的坐标为
(2)S=S1+S2==
S′=t2﹣2,令S'=0得t2﹣2=0,t=
因为0<t<时,S'<0;<t<2时,S'>0
所以,当t=时,Smin=,P点的坐标为.
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,椭圆 的左焦点为,右顶点为,上顶点为.
(1)已知椭圆的离心率为,线段中点的横坐标为,求椭圆的标准方程;
(2)已知△外接圆的圆心在直线上,求椭圆的离心率的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知抛物线C:,过抛物线焦点F的直线交抛物线C于A,B两点,P是抛物线外一点,连接,分别交抛物线于点C,D,且,设,的中点分别为M,N.
(1)求证:轴;
(2)若,求面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《算法统宗》全称《新编直指算法统宗》,是屮国古代数学名著,程大位著.书中有如下问题:“今有五人均银四十两,甲得十两四钱,戊得五两六钱.问:次第均之,乙丙丁各该若干?”意思是:有5人分40两银子,甲分10两4钱,戊分5两6钱,且相邻两项差相等,则乙丙丁各分几两几钱?(注:1两等于10钱)( )
A.乙分8两,丙分8两,丁分8两B.乙分8两2钱,丙分8两,丁分7两8钱
C.乙分9两2钱,丙分8两,丁分6两8钱D.乙分9两,丙分8两,丁分7两
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在棱长为1的正方体中,分别为棱的中点.为面对角线上任一点,则下列说法正确的是( )
A.平面内存在直线与平行
B.平面截正方体所得截面面积为
C.直线和所成角可能为60°
D.直线和所成角可能为30°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆过点,且离心率为.
(1)求椭圆的方程;
(2)已知圆方程为,过圆上任意一点作圆的切线,切线与椭圆交于,两点,为坐标原点,设为的中点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
如图,已知是以的直角三角形铁皮,米,分别是边上不与端点重合的动点,且.现将铁皮沿折起至的位置,使得平面平面,连接,如图所示.现要制作一个四棱锥的封闭容器,其中铁皮和直角梯形铁皮分别是这个封闭容器的一个侧面和底面,其他三个侧面用相同材料的铁皮无缝焊接密封而成(假设制作过程中不浪费材料,且铁皮厚度忽略不计).
(1)若为边的中点,求制作三个新增侧面的铁皮面积是多少平方米?
(2)求这个封闭容器的最大体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com