精英家教网 > 高中数学 > 题目详情

【题目】已知动圆过定点A(4,0), 且在y轴上截得的弦MN的长为8.

(Ⅰ) 求动圆圆心的轨迹C的方程;

(Ⅱ) 已知点B(1,0), 设不垂直于x轴的直线l与轨迹C交于不同的两点P, Q, x轴是的角平分线, 证明直线l过定点.

【答案】(Ⅰ)(Ⅱ)见解析

【解析】(Ⅰ)设动圆圆心C的坐标为( x , y )则所以,所求动圆圆心的轨迹C的方程为

(Ⅱ)证明:

设直线l方程为,联立(其中

,x轴是的角平分线,则

,即故直线l方程为,直线l过定点.1,0

本题考查轨迹方程求法、直线方程、圆方程、直线与圆的位置关系及直线过定点问题.第一问曲线轨迹方程的求解问题是高考的热点题型之一,准确去除不满足条件的点是关键.第二问对角平分线的性质运用是关键,对求定值问题的解决要控制好运算量,同时注意好判别式的条件,以防多出结果.圆锥曲线问题经常与向量、三角函数结合,在训练中要注意.本题无论是求圆心的轨迹方程,还是求证直线过定点,计算量都不太大,对思维的要求挺高;设计问题背景,彰显应用魅力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆右顶点与右焦点的距离为,短轴长为

I)求椭圆的方程;

)过左焦点F的直线与椭圆分别交于AB两点,若三角形OAB的面积为求直线AB的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)证明: 图象恒在直线的上方;

(2)若恒成立,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2016·云南玉溪一中月考)已知函数,函数g(x)=f(x)-x+1的零点按从小到大的顺序排列成一个数列,该数列的前n项的和为Sn,则S10等于(  )

A. 45 B. 55

C. 210-1 D. 29-1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

,求函数的极值;

(Ⅱ)若,,,使得),求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的面积为,且,

(Ⅰ)若 的图象与直线相邻两个交点间的最短距离为,且,求的面积

(Ⅱ)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“过大年,吃水饺”是我国不少地方过春节的一大习俗,2018年春节前夕, 市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标.

(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中的数据用该组区间的中点值作代表);

(2)①由直方图可以认为,速冻水饺的该项质量指标值服从正态分布,利用该正态分布,求落在内的概率;

②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于内的包数为,求的分布列和数学期望.

附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为

②若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,棱底面,且, , , 的中点.

(1)求证: 平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是直角梯形,

,点在线段上,且 平面.

1)求证:平面平面

2)当四棱锥的体积最大时,求四棱锥的表面积.

查看答案和解析>>

同步练习册答案