精英家教网 > 高中数学 > 题目详情
14.设x,y满足约束条件$\left\{\begin{array}{l}1≤x≤3\\-1≤x-y≤0\end{array}\right.$,则z=x-2y的取值范围为[-5,-1].

分析 由约束条件作出可行域,联立方程组求出最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}1≤x≤3\\-1≤x-y≤0\end{array}\right.$作出可行域如图,

联立$\left\{\begin{array}{l}{x=1}\\{x-y=0}\end{array}\right.$,解得A(1,1),
联立$\left\{\begin{array}{l}{x=3}\\{x-y+1=0}\end{array}\right.$,解得B(3,4),
由图可知,当目标函数z=x-2y过A时,z有最大值为-1;
当目标函数z=x-2y过B时,z有最小值为-5.
故答案为:[-5,-1].

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.在△ABC中,AB=5,AC=6,点P是△ABC的外接圆圆心,则$\overrightarrow{AP}$•$\overrightarrow{B{C}_{\;}}$=$\frac{11}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知复数z=i,则$\frac{1}{z+1}$的虚部为(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{1}{2}i$D.$-\frac{1}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.以圆x2+4x+y2=0的圆心为圆心,半径为3的圆的方程(  )
A.(x-2)2+y2=3B.(x-2)2+y2=9C.(x+2)2+y2=3D.(x+2)2+y2=9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=$\sqrt{tanx-1}$的定义域是(  )
A.$[{\frac{π}{4}+kπ,+∞}),k∈Z$B.$[{\frac{π}{4}+kπ,\frac{π}{2}+kπ}),k∈Z$C.$[{\frac{π}{4}+kπ,\frac{π}{2}+kπ}]$,k∈ZD.$[{\frac{π}{4},\frac{π}{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)的定义域为(-∞,0),其导函数为f′(x),且满足2f(x)+f′(x)<0,则不等式f(x+2015)<$\frac{f(-4)}{{e}^{2x+4038}}$的解集为(  )
A.{x|x>-2019}B.{x|x<-2015}C.{x|-2019<x<-2015}D.{x|-2019<x<0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=xcosx在点(0,f(0))处的切线斜率是(  )
A.0B.-1C.1D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设函数$f(x)=\frac{3}{2+x}$,若f(a-1)=2,则实数a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,角A、B、C的对边分别为a、b、c,若a2+b2=$\frac{2}{3}$c2,则直线ax+by-c=0被圆x2+y2=4所截得的弦长为$\sqrt{10}$.

查看答案和解析>>

同步练习册答案