精英家教网 > 高中数学 > 题目详情
9.函数f(x)=$\sqrt{tanx-1}$的定义域是(  )
A.$[{\frac{π}{4}+kπ,+∞}),k∈Z$B.$[{\frac{π}{4}+kπ,\frac{π}{2}+kπ}),k∈Z$C.$[{\frac{π}{4}+kπ,\frac{π}{2}+kπ}]$,k∈ZD.$[{\frac{π}{4},\frac{π}{2}})$

分析 根据函数f(x)的解析式,列出不等式tanx-1≥0,求出解集即可.

解答 解:∵函数f(x)=$\sqrt{tanx-1}$,
∴tanx-1≥0,
即tanx≥1;
解得$\frac{π}{4}$+kπ≤x<$\frac{π}{2}$+kπ,k∈Z;
∴f(x)的定义域是[$\frac{π}{4}$+kπ,$\frac{π}{2}$+kπ),k∈Z.
故选:B.

点评 本题考查了求函数定义域的应用问题,也考查了正切函数的图象与性质,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知复数z=$\sqrt{2}$-3i,则复数的模|z|是(  )
A.5B.8C.6D.$\sqrt{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=$\left\{\begin{array}{l}|{lo{g}_{3}x|,0<x<3}\\{-cos(\frac{π}{3}x),3≤x≤9}\end{array}\right.$,若存在实数x1,x2,x3,x4满足f(xl)=f(x2)=f(x3)=f(x4),且x1<x2<x3<x4,则x1•x2•x3•x4的取值范围是(27,$\frac{135}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列有关命题的说法正确的是(  )
A.若x2=1,则x=1为真命题.
B.语句x2-2x+3>0不是命题
C.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”
D.命题“若x=y,则sinx=siny”的逆否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知a>b,则下列不等式成立的是(  )
A.a2-b2≥0B.ac>bcC.a3>b3D.ac2>bc2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设x,y满足约束条件$\left\{\begin{array}{l}1≤x≤3\\-1≤x-y≤0\end{array}\right.$,则z=x-2y的取值范围为[-5,-1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若过点A(2,m)可作函数f(x)=x3-3x对应曲线的三条切线,则实数m的取值范围(  )
A.[-2,6]B.(-6,1)C.(-6,2)D.(-4,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若一系列函数的解析式相同,值域相同,但定义域不相同,则称这些函数为“孪生函数”.例如解析式为y=2x2+1,值域为{9}的“孪生函数”有3个:
(1)y=2x2+1,x∈{-2};(2)y=2x2+1,x∈{2};(3)y=2x2+1,x∈{-2,2}.
那么函数解析式为y=2x2+1,值域为{1,5}的“孪生函数”有3个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.棱长为1的正方体ABCD-A1B1C1D1中,点P在平面ABCD上,满足PC1=3PA,则点P的轨迹为(  )
A.直线B.一段圆弧C.椭圆D.

查看答案和解析>>

同步练习册答案