分析 设外接圆的半径为r,由向量的三角形法则,以及向量的数量积的定义,结合等腰三角形的性质,即可得到.设外接圆的半径为r,由向量的三角形法则,以及向量的数量积的定义,结合等腰三角形的性质,即可得到.
解答
解:设外接圆的半径为r,
∴$\overrightarrow{AP}$•$\overrightarrow{B{C}_{\;}}$=$\overrightarrow{AP}$($\overrightarrow{AC}$-$\overrightarrow{AB}$)=$\overrightarrow{AP}$•$\overrightarrow{AC}$-$\overrightarrow{AP}$•$\overrightarrow{AB}$
=r•6•cos∠OAC-r•5•cos∠OAB,
=6×$\frac{6}{2}$-5×$\frac{5}{2}$=$\frac{11}{2}$,
故选:$\frac{11}{2}$.
点评 本题考查向量的数量积的定义和性质,考查运算能力,属于中档题和易错题.
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{π}{2}$+2kπ,$\frac{π}{2}$+2kπ](k∈Z) | B. | [$\frac{π}{2}+2kπ$,$\frac{3}{2}$π+2kπ](k∈Z) | ||
| C. | [$\frac{5π}{2}$+6kπ,$\frac{11π}{2}$+6kπ](k∈Z) | D. | [-$\frac{π}{2}$+6kπ,$\frac{5}{2}$π+6kπ](k∈Z) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一或第二象限 | B. | 第三或第四象限 | C. | 第一或第四象限 | D. | 第二或第三象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | M=N | B. | M?N | C. | M⊆N | D. | M?N |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com