已知数列和满足.若为等比数列,且
(1)求与;
(2)设。记数列的前项和为.
(i)求;
(ii)求正整数,使得对任意,均有.
(1),;(2)(i);(ii).
解析试题分析:(1)求与得通项公式,由已知得,再由已知得,,又因为数列为等比数列,即可写出数列的通项公式为,由数列的通项公式及,可得数列的通项公式为,;(2)(i)求数列的前项和,首先求数列的通项公式,由,将,代入整理得,利用等比数列求和公式,即可得数列的前项和;(ii)求正整数,使得对任意,均有,即求数列的最大项,即求数列得正数项,由数列的通项公式,可判断出,当时,,从而可得对任意恒有,即.
(1)由题意,,,知,又有,得公比(舍去),所以数列的通项公式为,所以,故数列的通项公式为,;
(2)(i)由(1)知,,所以;
(ii)因为;当时,,而,得,所以当时,,综上对任意恒有,故.
点评:本题主要考查等差数列与等比的列得概念,通项公式,求和公式,不等式性质等基础知识,同时考查运算求解能力.
科目:高中数学 来源: 题型:解答题
已知数列{an}的前n项和,数列{bn}满足b1=1,b3+b7=18,且(n≥2).(1)求数列{an}和{bn}的通项公式;(2)若,求数列{cn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)(2011•福建)已知等差数列{an}中,a1=1,a3=﹣3.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{an}的前k项和Sk=﹣35,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(2013•浙江)在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列.
(Ⅰ)求d,an;
(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|an|.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com