精英家教网 > 高中数学 > 题目详情

已知数列满足.若为等比数列,且
(1)求
(2)设。记数列的前项和为.
(i)求
(ii)求正整数,使得对任意,均有

(1);(2)(i);(ii)

解析试题分析:(1)求得通项公式,由已知,再由已知得,,又因为数列为等比数列,即可写出数列的通项公式为,由数列的通项公式及,可得数列的通项公式为,;(2)(i)求数列的前项和,首先求数列的通项公式,由,将代入整理得,利用等比数列求和公式,即可得数列的前项和;(ii)求正整数,使得对任意,均有,即求数列的最大项,即求数列得正数项,由数列的通项公式,可判断出,当时,,从而可得对任意恒有,即
(1)由题意,,知,又有,得公比舍去),所以数列的通项公式为,所以,故数列的通项公式为,
(2)(i)由(1)知,,所以
(ii)因为;当时,,而,得,所以当时,,综上对任意恒有,故
点评:本题主要考查等差数列与等比的列得概念,通项公式,求和公式,不等式性质等基础知识,同时考查运算求解能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知等差数列满足:.
(1)求数列的通项公式;
(2)设等比数列的各项均为正数,为其前项和,若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

等差数列的首项为23,公差为整数,且第6项为正数,从第7项起为负数。
(1)求此数列的公差d;
(2)当前n项和是正数时,求n的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}的前n项和,数列{bn}满足b1=1,b3+b7=18,且(n≥2).(1)求数列{an}和{bn}的通项公式;(2)若,求数列{cn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列满足:,(≥3),记
(≥3).
(1)求证数列为等差数列,并求通项公式;
(2)设,数列{}的前n项和为,求证:<<.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(已知是首项为1,公差为2的等差数列,表示的前项和.
(1)求
(2)设是首项为2的等比数列,公比满足,求的通项公式及其前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}的各项均为正数,前n项和为Sn,且满足2Sn+n-4.
(1)求证{an}为等差数列;
(2)求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)(2011•福建)已知等差数列{an}中,a1=1,a3=﹣3.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{an}的前k项和Sk=﹣35,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013•浙江)在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列.
(Ⅰ)求d,an
(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|an|.

查看答案和解析>>

同步练习册答案