精英家教网 > 高中数学 > 题目详情
8.如图是一个算法流程图,则输出的n的值是6

分析 由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.

解答 解:模拟程序的运行,可得
n=1,
执行循环体,n=2
不满足条件42>2017,执行循环体,n=3
不满足条件43>2017,执行循环体,n=4
不满足条件44>2017,执行循环体,n=5
不满足条件45>2017,执行循环体,n=6
满足条件46>2017,退出循环,输出n的值为6.
故答案为:6.

点评 本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知a∈R,函数$f(x)={2^{\frac{1}{x}+a}}$.
(1)当a=1时,解不等式f(x)>4;
(2)若f(x)>2-x在x∈[2,3]恒成立,求a的取值范围;
(3)若关于x的方程f(x)-2(a-4)x+2a-5=0在区间(-2,0)内的解恰有一个,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.平面内给定三个向量$\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(-1,2),$\overrightarrow{c}$=(2,1).
(1)求满足$\overrightarrow{a}$=m$\overrightarrow{b}$+n$\overrightarrow{c}$的实数m,n;
(2)若($\overrightarrow{a}$+k$\overrightarrow{c}$)∥(2$\overrightarrow{b}$-$\overrightarrow{a}$),求实数k.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在极坐标系中,直线$ρcos(θ-\frac{π}{4})=\sqrt{2}$与曲线$ρ=\sqrt{2}$的公共点个数是(  )
A.0B.1C.2D.以上都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知平行四边形ABCD的三个顶点A(2,1),B(3,2),D(-1,4),且F为AB中点,则$\overrightarrow{CF}$=(  )
A.($\frac{5}{2}$,-$\frac{7}{2}$)B.($\frac{5}{2}$,$\frac{7}{2}$)C.($\frac{3}{2}$,-$\frac{7}{2}$)D.($\frac{3}{2}$,$\frac{7}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.20世纪30年代,德国数学家洛萨---科拉茨提出猜想:任给一个正整数x,如果x是偶数,就将它减半;如果x是奇数,则将它乘3加1,不断重复这样的运算,经过有限步后,一定可以得到1,这就是著名的“3x+1”猜想.如图是验证“3x+1”猜想的一个程序框图,若输出n的值为8,则输入正整数m的所有可能值的个数为(  )
A.3B.4C.6D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知-π<x<0,sinx+cosx=$\frac{1}{5}$,
(1)求sinx-cosx的值;
(2)求$\frac{{2{{sin}^2}x+2sinx•cosx}}{1-tanx}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.根据条件求解下列问题
(1)函数f(x)=$\left\{\begin{array}{l}{x+2(x≤-1)}\\{{x}^{2}(-1<x<2)}\\{2x(x≥2)}\end{array}\right.$,若f(x)=3,求x;
(2)求函数的值域:y=$\frac{3x-1}{x+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知观测所得数据如表:
未感冒感冒合计
用某种药252248500
未用某种药224276500
合计4765241000
由K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$算得,
K2=$\frac{1000×(252×276-224×248)^{2}}{500×500×476×524}$≈3.143.
则有90%的把握认为用某种药与患感冒有关系.
下面的临界值表供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

同步练习册答案