精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)讨论f(x)的单调性;

(2)恰有两个极值点,求实数m的取值范围.

【答案】1)当时,为常数函数,无单调性;当时,单调增区间是,单调减区间是;当时,单调增区间是,单调减区间是;(2.

【解析】

1)先求导,对分类讨论,即可求解;

2)函数有两个极值点,转化为导函数在定义域内有两个不同的零点,通过分离参数,构造新函数,把两个零点转为新函数的图像与直线有两个交点,利用求导作出新函数的图像,即可求解.

1的定义域为

时,为常数函数,无单调性;

时,令

时,令

综上所述,当时,为常数函数,无单调性;

时,单调增区间是,单调减区间是

时,单调增区间是,单调减区间是

2)由题意,的定义域为

,若上有两个极值点,

上有两个不相等的实数根,

①有两个不相等的正的实数根,

时,不是的实数根,

时,由①式可得

单调递增,又

单调递增,且

单调递减,且

因为

所以左侧,

右侧,

所以函数的图像如图所示:

要使上有两个不相等的实数根,

所以实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】石嘴山市第三中学高三年级统计学生的最近20次数学周测成绩(满分150分),现有甲乙两位同学的20次成绩如茎叶图所示:

1)根据茎叶图求甲乙两位同学成绩的中位数,并将同学乙的成绩的频率分布直方图填充完整;

(2)根据茎叶图比较甲乙两位同学数学成绩的平均值及稳定程度(不要求计算出具体值,给出结论即可);

(3)现从甲乙两位同学的不低于140分的成绩中任意选出2个成绩,记事件为“其中2个成绩分别属于不同的同学”,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数).在以为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为

(Ⅰ)求曲线的普通方程和直线的直角坐标方程;

(Ⅱ)设点,若直线与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是等差数列,公差为,前项和为.

1)设,求的最大值.

2)设,数列的前项和为,且对任意的,都有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为常数.

1)当时,解不等式

2)已知是以2为周期的偶函数,且当时,有.,且,求函数的反函数;

3)若在上存在个不同的点,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知是圆的直径,在圆上且分别在的两侧,其中.现将其沿折起使得二面角为直二面角,则下列说法不正确的是(

A.在同一个球面上

B.时,三棱锥的体积为

C.是异面直线且不垂直

D.存在一个位置,使得平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,侧棱都和平面垂直,.

1)证明:平面平面

2)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义在上的函数满足任意都有的大小关系是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左焦点为离心率为为圆的圆心.

(1)求椭圆的方程;

(2)已知过椭圆右焦点的直线交椭圆于两点,过且与垂直的直线与圆交于两点,求四边形面积的取值范围.

查看答案和解析>>

同步练习册答案