精英家教网 > 高中数学 > 题目详情

【题目】如图,在多面体中,侧棱都和平面垂直,.

1)证明:平面平面

2)求多面体的体积.

【答案】1)见解析;(2.

【解析】

1)连接,证明出四边形是平行四边形,可得出,证明出平面,可得出平面,再利用平面与平面垂直的判定定理可得出平面平面

2)平面把多面体分成两部分,多面体可分为一个三棱锥和一个三棱柱,多面体可看成三棱柱截去三棱锥,计算出两个多面体的体积,相加即可.

1)连接,由题设,所以四边形是平行四边形,所以.

由题设,四边形是等腰梯形,取中点,连接

因为,所以四边形是平行四边形,

,所以,得到,因此.

又由题设,平面,且平面

,所以平面,又(已证),

所以平面,而平面,因此平面平面

2)如图,平面把多面体分成两部分,分别计算.

易求,多面体可分为一个三棱锥和一个三棱柱,多面体可看成三棱柱截去三棱锥.

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如题所示:扇形ABC是一块半径为2千米,圆心角为60°的风景区,P点在弧BC上,现欲在风景区中规划三条三条商业街道PQQRRP,要求街道PQAB垂直,街道PRAC垂直,直线PQ表示第三条街道。

(1)如果P位于弧BC的中点,求三条街道的总长度;

(2)由于环境的原因,三条街道PQPRQR每年能产生的经济效益分别为每千米300万元、200万元及400万元,问:这三条街道每年能产生的经济总效益最高为多少?(精确到1万元)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数满足,且对任意的都有其中的导数,则下列一定判断正确的是( )

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论f(x)的单调性;

(2)恰有两个极值点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】年底,我国发明专利申请量已经连续年位居世界首位,下表是我国年至年发明专利申请量以及相关数据.

注:年份代码分别表示.

1)可以看出申请量每年都在增加,请问这几年中哪一年的增长率达到最高,最高是多少?

2)建立关于的回归直线方程(精确到),并预测我国发明专利申请量突破万件的年份.

参考公式:回归直线的斜率和截距的最小二乘法估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧棱底面,点在棱上,且.

(1)证明:平面

(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是矩形,底面.

1)当为何值时,平面?证明你的结论;

2)若在边上至少存在一点,使,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数|cosx|+cos|2x|有下列四个结论:①是偶函数;②π的最小正周期;③[ππ]上单调递增;④的值域为[22].上述结论中,正确的个数为(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极点与坐标原点重合,极轴与轴非负半轴重合,是曲线上任一点满足,设点的轨迹为.

1)求曲线的平面直角坐标方程;

2)将曲线向右平移个单位后得到曲线,设曲线与直线为参数)相交于两点,记点,求.

查看答案和解析>>

同步练习册答案