精英家教网 > 高中数学 > 题目详情

【题目】如图,已知是圆的直径,在圆上且分别在的两侧,其中.现将其沿折起使得二面角为直二面角,则下列说法不正确的是(

A.在同一个球面上

B.时,三棱锥的体积为

C.是异面直线且不垂直

D.存在一个位置,使得平面平面

【答案】D

【解析】

依次判断每个选项的正误:,所以A正确;当AC各在所在圆弧的中点,计算体积得到B正确;反证法证明ABCD不垂直C正确;根据C选项知D错误,得到答案。

因为,所以A正确;

AC各在所在圆弧的中点,此时三棱锥的底面BCD的面积和高均处于最大位置,此时体积为,所以B正确;

ABCD显然异面,用反证法证明他们不垂直.若,过ABD的垂线,垂足为E,因为为直二面角,所以AE⊥平面BCD,所以,所以,所以,这与矛盾,所以ABCD不垂直,所以C正确;

假设存在一个位置,使得平面平面,过,则平面由于平面,与选项矛盾.

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,平面四边形中,,,,将三角形沿翻折到三角形的位置平面平面中点.

(Ⅰ)求证:

(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,倾斜角为60°的直线与椭圆分别交于AB两点且,点C是椭圆上不同于AB一点,则△ABC面积的最大值为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某港口某天0时至24时的水深(米)随时间(时)变化曲线近似满足如下函数模型.若该港口在该天0时至24时内,有且只有3个时刻水深为3米,则该港口该天水最深的时刻不可能为(

A.16B.17C.18D.19

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论f(x)的单调性;

(2)恰有两个极值点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是曲线上的一个动点,曲线在点处的切线与轴、轴分别交于两点,点是坐标原点,①;②的面积为定值;③曲线上存在两点使得是等边三角形;④曲线上存在两点使得是等腰直角三角形,其中真命题的个数是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧棱底面,点在棱上,且.

(1)证明:平面

(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题:

①若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差不变;

②在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高;

③设随机变量服从正态分布,若,则

④对分类变量的随机变量的观测值来说,越小,判断“有关系”的把握越大.其中正确的命题序号是(

A.①②B.①②③C.①③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义在上的函数,若函数满足:①在区间上单调递减;②存在常数,使其值域为,则称函数渐近函数”.

1)设,若上有解,求实数取值范围;

2)证明:函数是函数的渐近函数,并求此时实数的值;

3)若函数,证明:当时,不是的渐近函数.

查看答案和解析>>

同步练习册答案