·ÖÎö £¨¢ñ£©ÓÉÌâÒâÀëÐÄÂʽáºÏÒþº¬Ìõ¼þ¿ÉµÃa£¬b£¬cµÄ¹ØÏµ£¬ÔÙÓÉ$\overrightarrow{G{F}_{1}}$•$\overrightarrow{G{F}_{2}}$=0£¬¿ÉµÃGF1¡ÍGF2£¬½áºÏ¡÷GF1F2µÄÃæ»ýΪ3¼°ÍÖÔ²¶¨Òå¿ÉµÃa£¬bµÄÖµ£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨¢ò£©µ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬Ð´³öÖ±ÏßlµÄ·½³Ì£¬ÇóµÃM£¬NµÄ×ø±ê£¬µÃµ½AM£¬NBµÄ·½³Ì£¬ÁªÁ¢ÇóµÃ½»µã×ø±ê£¬¿ÉµÃ½»µãÔÚÒ»Ìõ´¹Ö±ÓÚxÖáµÄ¶¨Ö±ÏßÉÏx=4ÉÏ£»µ±
µ±Ö±ÏßlбÂÊ´æÔÚʱ£¬Éèl£ºy=k£¨x-1£©£¬ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµµÃµ½M£¬NµÄºá×ø±êµÄºÍÓë»ý£¬µÃµ½AM£¬NBµÄ·½³Ì£¬ÁªÁ¢ÇóµÃ½»µã×ø±ê£¬´úÈë¸ùÓëϵÊýµÄ¹ØÏµ¿ÉµÃÖ±ÏßAMÓëÖ±ÏßBN½»µãÔÚÖ±Ïßx=4ÉÏ£®
½â´ð ½â£º£¨¢ñ£©ÉèF1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬
ÓÉe=$\frac{c}{a}=\frac{1}{2}$£¬µÃ$a=2c£¬b=\sqrt{3}c$£¬
¸ù¾Ý$\overrightarrow{G{F}_{1}}$•$\overrightarrow{G{F}_{2}}$=0£¬µÃ$|G{F}_{1}{|}^{2}+|G{F}_{2}{|}^{2}=4{c}^{2}$£¬
¡ß¡÷GF1F2µÄÃæ»ýΪ3£¬¡à|GF1|•|GF2|=6£¬Ôò16c2-12=4c2£¬
¡à$c=1£¬a=2£¬b=\sqrt{3}$£¬
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£»
£¨¢ò£©ÓÉ£¨1£©Öª£¬A£¨-2£¬0£©£¬B£¨2£¬0£©£®
¢Ùµ±Ö±ÏßlбÂʲ»´æÔÚʱ£¬l£ºx=1ÓëÍÖÔ²½»ÓÚµã$M£¨1£¬\frac{3}{2}£©£¬N£¨1£¬-\frac{3}{2}£©$£®
´ËʱֱÏß$AM£ºy=\frac{1}{2}£¨x+2£©£¬NB£ºy=\frac{3}{2}£¨x-2£©$£¬
¡àËüÃǽ»ÓÚ£¨4£¬3£©£¬ËüÔÚ´¹Ö±ÓÚxÖáµÄÖ±Ïßx=4ÉÏ£®
¢Úµ±Ö±ÏßlбÂÊ´æÔÚʱ£¬Éèl£ºy=k£¨x-1£©£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=k£¨x-1£©}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬µÃ£¨3+4k2£©x2-8k2x+4£¨k2-3£©=0£®
ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
¡à${x_1}+{x_2}=\frac{{8{k^2}}}{{3+4{k^2}}}£¬{x_1}{x_2}=\frac{{4£¨{k^2}-3£©}}{{3+4{k^2}}}$£¬
Ö±ÏßAMµÄ·½³ÌΪ$y=\frac{{y}_{1}}{{x}_{1}+2}£¨x+2£©$£¬¼´$y=\frac{k£¨{x}_{1}-1£©}{{x}_{1}+2}£¨x+2£©$£¬
Ö±ÏßBNµÄ·½³ÌΪ$y=\frac{{y}_{2}}{{x}_{2}+2}£¨x+2£©$£¬¼´y=$\frac{k£¨{x}_{2}-1£©}{{x}_{2}+2}£¨x+2£©$£®
ÁªÁ¢ÏûÈ¥yµÃ£º$x=\frac{{2£¨2{x_1}{x_2}-3{x_1}+{x_2}£©}}{{{x_1}+3{x_2}-4}}=\frac{{2[\frac{{8£¨{k^2}-3£©}}{{3+4{k^2}}}-\frac{{24{k^2}}}{{3+4{k^2}}}+4{x_2}]}}{{\frac{{8{k^2}}}{{3+4{k^2}}}-4+2{x_2}}}=4$£®
¡àÖ±ÏßAMÓëÖ±ÏßBN½»µãÔÚÖ±Ïßx=4ÉÏ£®
×ÛÉÏÖª£¬Ö±ÏßAMÓëÖ±ÏßBN½»µãÒ»¶¨ÔÚÖ±Ïßx=4ÉÏ£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬¿¼²éÁËÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÖ±ÏßÓëÔ²×¶ÇúÏßλÖùØÏµµÄÓ¦Ó㬿¼²é¼ÆËãÇó½âÄÜÁ¦ºÍÍÆÀíÂÛÖ¤ÄÜÁ¦£¬ÊÇÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
| ÉêÇëÒâÏò ÄêÁä | Ò¡ºÅ | ¾º¼Û£¨ÈËÊý£© | ºÏ¼Æ | |
| µç¶¯Ð¡Æû³µ£¨ÈËÊý£© | ·Çµç¶¯Ð¡Æû³µ£¨ÈËÊý£© | |||
| 30ËêÒÔÏ £¨º¬30Ë꣩ | 50 | 100 | 50 | 200 |
| 30ÖÁ50Ëê £¨º¬50Ë꣩ | 50 | 150 | 300 | 500 |
| 50ËêÒÔÉÏ | 100 | 150 | 50 | 300 |
| ºÏ¼Æ | 200 | 400 | 400 | 1000 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 36 | B£® | 72 | C£® | 48 | D£® | 108 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 36¸ö | B£® | 48¸ö | C£® | 72¸ö | D£® | 120¸ö |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com