17£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬µãGÔÚÍÖÔ²CÉÏ£¬ÇÒ$\overrightarrow{G{F}_{1}}$•$\overrightarrow{G{F}_{2}}$=0£¬¡÷GF1F2µÄÃæ»ýΪ3£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÉèÍÖÔ²µÄ×óÓÒ¶¥µãΪA£¬B£¬¹ýF2µÄÖ±ÏßlÓëÍÖÔ²½»ÓÚ²»Í¬µÄÁ½µãM£¬N£¨²»Í¬ÓÚµãA£¬B£©£¬Ì½Ë÷Ö±ÏßAM£¬BNµÄ½»µãÄÜ·ñÔÚÒ»Ìõ´¹Ö±ÓÚxÖáµÄ¶¨Ö±ÏßÉÏ£¬ÈôÄÜ£¬Çó³öÕâÌõ¶¨Ö±Ïߵķ½³Ì£»Èô²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©ÓÉÌâÒâÀëÐÄÂʽáºÏÒþº¬Ìõ¼þ¿ÉµÃa£¬b£¬cµÄ¹ØÏµ£¬ÔÙÓÉ$\overrightarrow{G{F}_{1}}$•$\overrightarrow{G{F}_{2}}$=0£¬¿ÉµÃGF1¡ÍGF2£¬½áºÏ¡÷GF1F2µÄÃæ»ýΪ3¼°ÍÖÔ²¶¨Òå¿ÉµÃa£¬bµÄÖµ£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨¢ò£©µ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬Ð´³öÖ±ÏßlµÄ·½³Ì£¬ÇóµÃM£¬NµÄ×ø±ê£¬µÃµ½AM£¬NBµÄ·½³Ì£¬ÁªÁ¢ÇóµÃ½»µã×ø±ê£¬¿ÉµÃ½»µãÔÚÒ»Ìõ´¹Ö±ÓÚxÖáµÄ¶¨Ö±ÏßÉÏx=4ÉÏ£»µ±
µ±Ö±ÏßlбÂÊ´æÔÚʱ£¬Éèl£ºy=k£¨x-1£©£¬ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµµÃµ½M£¬NµÄºá×ø±êµÄºÍÓë»ý£¬µÃµ½AM£¬NBµÄ·½³Ì£¬ÁªÁ¢ÇóµÃ½»µã×ø±ê£¬´úÈë¸ùÓëϵÊýµÄ¹ØÏµ¿ÉµÃÖ±ÏßAMÓëÖ±ÏßBN½»µãÔÚÖ±Ïßx=4ÉÏ£®

½â´ð ½â£º£¨¢ñ£©ÉèF1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬
ÓÉe=$\frac{c}{a}=\frac{1}{2}$£¬µÃ$a=2c£¬b=\sqrt{3}c$£¬
¸ù¾Ý$\overrightarrow{G{F}_{1}}$•$\overrightarrow{G{F}_{2}}$=0£¬µÃ$|G{F}_{1}{|}^{2}+|G{F}_{2}{|}^{2}=4{c}^{2}$£¬
¡ß¡÷GF1F2µÄÃæ»ýΪ3£¬¡à|GF1|•|GF2|=6£¬Ôò16c2-12=4c2£¬
¡à$c=1£¬a=2£¬b=\sqrt{3}$£¬
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£»
£¨¢ò£©ÓÉ£¨1£©Öª£¬A£¨-2£¬0£©£¬B£¨2£¬0£©£®
¢Ùµ±Ö±ÏßlбÂʲ»´æÔÚʱ£¬l£ºx=1ÓëÍÖÔ²½»ÓÚµã$M£¨1£¬\frac{3}{2}£©£¬N£¨1£¬-\frac{3}{2}£©$£®
´ËʱֱÏß$AM£ºy=\frac{1}{2}£¨x+2£©£¬NB£ºy=\frac{3}{2}£¨x-2£©$£¬
¡àËüÃǽ»ÓÚ£¨4£¬3£©£¬ËüÔÚ´¹Ö±ÓÚxÖáµÄÖ±Ïßx=4ÉÏ£®
¢Úµ±Ö±ÏßlбÂÊ´æÔÚʱ£¬Éèl£ºy=k£¨x-1£©£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=k£¨x-1£©}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬µÃ£¨3+4k2£©x2-8k2x+4£¨k2-3£©=0£®
ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
¡à${x_1}+{x_2}=\frac{{8{k^2}}}{{3+4{k^2}}}£¬{x_1}{x_2}=\frac{{4£¨{k^2}-3£©}}{{3+4{k^2}}}$£¬
Ö±ÏßAMµÄ·½³ÌΪ$y=\frac{{y}_{1}}{{x}_{1}+2}£¨x+2£©$£¬¼´$y=\frac{k£¨{x}_{1}-1£©}{{x}_{1}+2}£¨x+2£©$£¬

Ö±ÏßBNµÄ·½³ÌΪ$y=\frac{{y}_{2}}{{x}_{2}+2}£¨x+2£©$£¬¼´y=$\frac{k£¨{x}_{2}-1£©}{{x}_{2}+2}£¨x+2£©$£®
ÁªÁ¢ÏûÈ¥yµÃ£º$x=\frac{{2£¨2{x_1}{x_2}-3{x_1}+{x_2}£©}}{{{x_1}+3{x_2}-4}}=\frac{{2[\frac{{8£¨{k^2}-3£©}}{{3+4{k^2}}}-\frac{{24{k^2}}}{{3+4{k^2}}}+4{x_2}]}}{{\frac{{8{k^2}}}{{3+4{k^2}}}-4+2{x_2}}}=4$£®
¡àÖ±ÏßAMÓëÖ±ÏßBN½»µãÔÚÖ±Ïßx=4ÉÏ£®
×ÛÉÏÖª£¬Ö±ÏßAMÓëÖ±ÏßBN½»µãÒ»¶¨ÔÚÖ±Ïßx=4ÉÏ£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬¿¼²éÁËÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÖ±ÏßÓëÔ²×¶ÇúÏßλÖùØÏµµÄÓ¦Ó㬿¼²é¼ÆËãÇó½âÄÜÁ¦ºÍÍÆÀíÂÛÖ¤ÄÜÁ¦£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖªµãA¡¢F·Ö±ðÊÇÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÉ϶¥µãºÍ×󽹵㣬ÈôAFÓëÔ²O£ºx2+y2=4ÏàÇÐÓÚµãT£¬ÇÒµãTÊÇÏß¶ÎAF¿¿½üµãAµÄÈýµÈ·Öµã£¬ÔòÍÖÔ²CµÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{18}+\frac{{y}^{2}}{6}$=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Ä³ÊÐÓÚ½ñÄê1ÔÂ1ÈÕÆðʵʩСÆû³µÏÞ¹ºÕþ²ß£®¸ù¾Ý¹æ¶¨£¬Ã¿Äê·¢·Å10Íò¸öСÆû³µÃû¶î£¬ÆäÖе綯СÆû³µÕ¼20%£¬Í¨¹ýÒ¡ºÅ·½Ê½·¢·Å£¬ÆäÓàÃû¶îͨ¹ýÒ¡ºÅºÍ¾º¼ÛÁ½ÖÖ·½Ê½¸÷·¢·ÅÒ»°ë£®Õþ²ßÍÆ³öºó£¬Ä³ÍøÕ¾Õë¶Ô²»Í¬ÄêÁä¶ÎµÄÉêÇëÒâÏò½øÐÐÁ˵÷²é£¬½á¹ûÈçϱíËùʾ£º
ÉêÇëÒâÏò
ÄêÁä
Ò¡ºÅ¾º¼Û£¨ÈËÊý£©ºÏ¼Æ
µç¶¯Ð¡Æû³µ£¨ÈËÊý£©·Çµç¶¯Ð¡Æû³µ£¨ÈËÊý£©
30ËêÒÔÏÂ
£¨º¬30Ë꣩
5010050200
30ÖÁ50Ëê
£¨º¬50Ë꣩
50150300500
50ËêÒÔÉÏ10015050300
ºÏ¼Æ2004004001000
£¨1£©²ÉÈ¡·Ö²ã³éÑùµÄ·½Ê½´Ó30ÖÁ50ËêµÄÈËÖгéÈ¡10ÈË£¬ÇóÆäÖи÷ÖÖÒâÏòÈËÊý£»
£¨2£©ÓÃÑù±¾¹À¼Æ×ÜÌ壬ÔÚÈ«ÌåÊÐÃñÖÐÈÎÒâѡȡ4ÈË£¬ÆäÖÐÒ¡ºÅÉêÇëµç¶¯Ð¡Æû³µÒâÏòµÄÈËÊý¼ÇΪX£¬ÇóXµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÒÑÖªp£ºx2-3x-4¡Ü0£¬q£º|x-3|¡Üm£¨m£¾0£©£¬ÈôpÊÇqµÄ±ØÒª²»³ä·ÖÌõ¼þ£¬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ£¨0£¬1]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{4}$+$\frac{y^2}{3}$=1£¬µãA£¬C·Ö±ðΪÍÖÔ²CµÄ×ó¶¥µãºÍÉ϶¥µã£¬µãFΪÍÖÔ²µÄÓÒ½¹µã£¬Éè¹ýµãAµÄÖ±Ïß½»ÍÖÔ²CÓëÁíÒ»µãM£®
£¨¢ñ£©µ±F¹ØÓÚÖ±ÏßAMµÄ¶Ô³ÆµãÔÚyÖáÉÏʱ£¬ÇóÖ±ÏßAMµÄбÂÊ£»
£¨¢ò£©¼ÇµãF¹ØÓÚµãMµÄ¶Ô³ÆµãΪP£¬Á¬½ÓPC½»Ö±ÏßAMÓëµãQ£¬µ±µãQÊÇÏß¶ÎAMµÄÖеãʱ£¬ÇóµãMµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=2ex+2ax-a2£¬a¡ÊR£®
£¨1£©µ±a=1ʱ£¬Çóf£¨x£©Ôڵ㣨0£¬f£¨0£©£©´¦µÄÇÐÏß·½³Ì£»
£¨2£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨3£©Èôx¡Ý0ʱ£¬f£¨x£©¡Ýx2-3ºã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®2λÄÐÉúºÍ3λŮÉú¹²5λͬѧվ³ÉÒ»ÅÅ£¬Ôò3λŮÉúÖÐÓÐÇÒÖ»ÓÐÁ½Î»Å®ÉúÏàÁÚµÄÅÅ·¨ÖÖÊýÊÇ£¨¡¡¡¡£©
A£®36B£®72C£®48D£®108

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÓÃ1£¬2£¬3£¬4£¬5Îå¸öÊý×Ö×é³ÉÎåλÊý£¬¹²Óв»Í¬µÄÆæÊý£¨¡¡¡¡£©
A£®36¸öB£®48¸öC£®72¸öD£®120¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÉèA£¬BΪÅ×ÎïÏßy2=xÉÏÏàÒìÁ½µã£¬Æä×Ý×ø±ê·Ö±ðΪ-1£¬2£¬·Ö±ðÒÔA£¬BΪÇеã×÷Å×ÎïÏßµÄÇÐÏßl1£¬l2£¬Éèl1£¬l2ÏཻÓÚµãP£®
£¨¢ñ£©ÇóµãPµÄ×ø±ê£»
£¨¢ò£©MΪA£¬B¼äÅ×ÎïÏß¶ÎÉÏÈÎÒâÒ»µã£¬Éè$\overrightarrow{PM}=¦Ë\overrightarrow{PA}+¦Ì\overrightarrow{PB}$£¬ÊÔÅжÏ$\sqrt{¦Ë}+\sqrt{¦Ì}$ÊÇ·ñΪ¶¨Öµ£¬Èç¹ûΪ¶¨Öµ£¬Çó³ö¸Ã¶¨Öµ£¬Èç¹û²»ÊǶ¨Öµ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸