精英家教网 > 高中数学 > 题目详情

(本题满分12分)已知定义在区间(0,+)上的函数,,且当.① 求的值;② 判断的单调性;③ 若 ,解不等式.

解 ①令;②单调减函数 
③,

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题12分)若是定义在上的增函数,且 
(1)求的值;(2)解不等式:
(3)若,解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知奇函数f(x)在定义域[-2,2]内单调递减,求满足f(1-m)+f(1-m2)<0的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域关于原点对称,且满足以下三个条件:
是定义域中的数时,有
是定义域中的一个数);
③当时,
(1)判断之间的关系,并推断函数的奇偶性;
(2)判断函数上的单调性,并证明;
(3)当函数的定义域为时,
①求的值;②求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,角的始边落在轴上,其始边、终边分别与单位圆交于点),△为等边三角形.
(1)若点的坐标为,求的值;
(2)设,求函数的解析式和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)设函数的定义域为R,当时,,且对任意,都有,且
(1)求的值;
(2)证明:在R上为单调递增函数;
(3)若有不等式成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,实数a,b为常数),
(1)若a=1,在(0,+∞)上是单调增函数,求b的取值范围;
(2)若a≥2,b=1,判断方程在(0,1]上解的个数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=3x+2,x∈[-1,2],证明该函数的单调性并求出其最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)已知函数
(1)若,求x的值;
(2)若对于恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案