精英家教网 > 高中数学 > 题目详情

(本小题满分12分)设函数的定义域为R,当时,,且对任意,都有,且
(1)求的值;
(2)证明:在R上为单调递增函数;
(3)若有不等式成立,求的取值范围。

(1);(2)的取值范围是

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知是定义在上的单调递增函数,且
(1)解不等式
(2)若,对所有恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

证明函数  是增函数,并求函数的最大值和最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知定义在区间(0,+)上的函数,,且当.① 求的值;② 判断的单调性;③ 若 ,解不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知y=是二次函数,且f(0)=8及f(x+1)-f(x)=-2x+1
(1)求的解析式;
(2)求函数的单调递减区间及值域..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)已知函数
(Ⅰ)判断并证明函数的奇偶性;
(Ⅱ)判断函数上的单调性并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
已知定义域为的函数是奇函数.
(Ⅰ)求的值;  (Ⅱ)判断函数的单调性;
(Ⅲ)若对任意的,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数均为实数,且满足,对于任意实数都有,并且当时有成立。
(1)求的值;
(2)证明:
(3)当∈[-2,2]且取最小值时,函数为实数)是单调函数,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)已知函数是奇函数,且.
(1) 求的表达式;(2) 设; zxxk
,求S的值.

查看答案和解析>>

同步练习册答案