精英家教网 > 高中数学 > 题目详情
4.对于任意实数x1,x2,max{x1,x2}表示x1,x2中较大的那个数,则当x∈R时,函数f(x)=max{2-x2,x},x∈[-3,$\frac{1}{2}$]的最大值与最小值的差是5.

分析 根据新定义,已知x∈[-3,$\frac{1}{2}$],分别求出函数2-x2和x的最值,可得f(x)的最大值与最小值,进而得到之差.

解答 解:∵实数x1,x2,max{x1,x2}表示x1,x2中较大的那个数,
∵x∈[-3,$\frac{1}{2}$],
∴对于2-x2,当x=0时有最大值为2,当x=-3时有最小值为-7,
对于x,当x=$\frac{1}{2}$时有最大值为$\frac{1}{2}$,当x=-3时有最小值为-3,
∴f(x)=max{2-x2,x}的最大值为2,最小值为-3,
则最大值与最小值的差是5,
故答案为:5.

点评 本题是一道新定义题,考查了函数的最值及其几何意义,注意运用二次函数的图象和性质,以及一次函数的单调性,是道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xOy中,以O为极点,x轴非负半轴为极轴建立极坐标系,取相同的长度单位,已知曲线C的极坐标方程为ρ=2$\sqrt{5}$sinθ,直线l的参数方程为$\left\{\begin{array}{l}{x=3-\frac{\sqrt{2}}{2}t}\\{y=\sqrt{5}+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数).
(Ⅰ)写出曲线C的直角坐标方程和直线l的普通方程.
(Ⅱ)若P(3,$\sqrt{5}$),直线l与曲线C相交于M,N两点,求|PM|+|PN|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=|2x-1|,g(x)=x2-(2+3k)x+2k+1.若方程g[f(x)]=0有3个不同实根,则k的取值范围为$k=-\frac{1}{2}$或k>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知曲线C1的参数方程为$\left\{{\begin{array}{l}{x=cosα}\\{y=sinα}\end{array}}\right.$(α为参数,且α∈[π,2π]),曲线C2的极坐标方程为ρ=2sinθ.
(1)求C1的极坐标方程与C2的直角坐标方程;
(2)若P是C1上任意一点,过点P的直线l交C2于M,N两点,求|PM|•|PN|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,四边形ABCD是⊙O的内接四边形,延长BC到E,已知∠BCD:∠ECD=3:2,那么∠BOD等于(  )
A.120°B.136°C.144°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\left\{\begin{array}{l}{\frac{1}{3}x+1,x≤1}\\{lnx,x>1}\end{array}\right.$且方程f(x)=ax恰有两个不同的实根,则实数a的取值范围是[$\frac{1}{3}$,$\frac{1}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线l经过点P(-2,6),倾斜角α=$\frac{π}{4}$,圆C的极坐标方程是ρ=2cosθ.
(Ⅰ)写出直线l的参数方程,并把圆C的极坐标方程化为直角坐标方程;
(Ⅱ)设圆C上的点A到直线l的距离最小,点B到直线l的距离最大,求点A,B的横坐标之积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若0<b≤a,证明$\frac{a-b}{a}$≤ln$\frac{a}{b}$≤$\frac{a-b}{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=x3-3ax+$\frac{1}{4}$,若函数y=f(x)的极小值为0,则a的值为(  )
A.$\frac{1}{4}$B.-$\frac{1}{2}$C.$\frac{3}{4}$D.-$\frac{3}{4}$

查看答案和解析>>

同步练习册答案