精英家教网 > 高中数学 > 题目详情

【题目】进入21世纪以来,南康区家具产业快速发展,为广大市民提供了数十万就业岗位,提高了广大市民的收入,也带动南康和周边县市的经济快速发展.同时,由于生产设备相对落后,生产过程中产生大量粉尘、废气,给人们的健康、交通安全等带来了严重影响.经研究发现,工业废气、粉尘等污染物排放是雾霾形成和持续的重要原因,治理污染刻不容缓.为此,某工厂新购置并安装了先进的废气、粉尘处理设备,使产生的废气、粉尘经过过滤后再排放,以降低对空气的污染.已知过滤过程中废气粉尘污染物的数量(单位:)与过滤时间 (单位:)间的关系为(均为非零常数,为自然对数的底数)其中时的污染物数量.若过滤后还剩余的污染物.

1)求常数的值.

2)试计算污染物减少到至少需要多长时间(精确到.参考数据:

【答案】(1)(或);(242小时.

【解析】

1)由题意可得,两边取对数可得的值;
2)令,即,两边取对数即可求出的值.

解:(1)由题意可知
,两边取对数可得:

2)令
,即


∴污染物减少到40%至少需要42小时.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】假定生男孩和生女孩是等可能的,令{一个家庭中既有男孩又有女孩},{一个家庭中最多有一个女孩}.对下述两种情形,讨论的独立性.

1)家庭中有两个小孩;

2)家庭中有三个小孩.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列中,,且对任意正整数都成立,数列的前项和为.

(1)若,且,求

(2)是否存在实数k,使数列是公比不为1的等比数列,且任意相邻三项按某顺序排列后成等差数列,若存在,求出所有k的值;若不存在,请说明理由;

(3)若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为迎接年北京冬季奥运会,普及冬奥知识,某校开展了“冰雪答题王”冬奥知识竞赛活动.现从参加冬奥知识竞赛活动的学生中随机抽取了名学生,将他们的比赛成绩(满分为分)分为组:,得到如图所示的频率分布直方图.

(Ⅰ)求的值;

(Ⅱ)记表示事件“从参加冬奥知识竞赛活动的学生中随机抽取一名学生,该学生的比赛成绩不低于分”,估计的概率;

(Ⅲ)在抽取的名学生中,规定:比赛成绩不低于分为“优秀”,比赛成绩低于分为“非优秀”.请将下面的列联表补充完整,并判断是否有的把握认为“比赛成绩是否优秀与性别有关”?

优秀

非优秀

合计

男生

女生

合计

参考公式及数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中央政府为了应对因人口老龄化而造成的劳动力短缺等问题拟定出台“延迟退休年龄政策”.为了了解人们]对“延迟退休年龄政策”的态度责成人社部进行调研.人社部从网上年龄在1565岁的人群中随机调查100人调査数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下

年龄

支持“延迟退休”的人数

15

5

15

28

17

(1)由以上统计数据填列联表并判断能否在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异

45岁以下

45岁以上

总计

支持

不支持

/td>

总计

(2)若以45岁为分界点从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人

①抽到1人是45岁以下时求抽到的另一人是45岁以上的概率.

②记抽到45岁以上的人数为求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)讨论的单调性;

(2)证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]

(Ⅰ)求图中的值,并估计该班期中考试数学成绩的众数;

(Ⅱ)从成绩不低于90分的学生和成绩低于50分的学生中随机选取2人,求这2人成绩均不低于90分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某县共有90间农村淘宝服务站随机抽取5间,统计元旦期间的网购金额(单位万元)的茎叶图如图所示其中茎为十位数叶为个位数.

(1)根据茎叶图计算样本均值

(2)若网购金额(单位万元)不小于18的服务站定义为优秀服务站其余为非优秀服务站.根据茎叶图推断90间服务站中有几间优秀服务站

(3)从随机抽取的5间服务站中再任取2间作网购商品的调查求恰有1间是优秀服务站的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为制定合理的节电方案,对居民用电情况进行了调查,通过抽样,获得了某年200户居民每户的月均用电量(单位:百度),将数据按照,,分成组,制成了如图所示的频率分布直方图:

(I)求直方图中的值;

56789月均用电量百厦

(Ⅱ)设该市有100万户居民,估计全市每户居民中月均用电量不低于6百度的人数,估计每户居民月均用电量的中位数,说明理由;

(Ⅲ)政府计划对月均用电量在4(百度)以下的用户进行奖励,月均用电量在内的用户奖励20元/月,月均用电量在内的用户奖励10元/月,月均用电量在内的用户奖励2元/月.若该市共有400万户居民,试估计政府执行此计划的年度预算.

查看答案和解析>>

同步练习册答案