精英家教网 > 高中数学 > 题目详情
已知三个数成等比数列,其和为28,其积为512,求这三个数.
考点:等比数列
专题:等差数列与等比数列
分析:设这三个数为
a
q
、q、aq,由已知可得
a
q
+a+aq=28  ①
q
a
•a•aq=512   ②
解得即可.
解答: 解:设这三个数为
a
q
、q、aq,
a
q
+a+aq=28  ①
q
a
•a•aq=512   ②

由②得a=8.
把a=8代入①得:
2
q
+2q=5,化为2q2-5q+2=0,
解得q=2或
1
2

∴这三个数为4,8,16或16,8,4.
点评:本题考查了等比数列的通项公式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若直线y=kx-1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中Q为原点),则K的值为(  )
A、
3
,-
3
B、4,-
3
C、
3
,-1
D、1,-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+2bx+1(a,b为实数),x∈R,F(x)=
f(x)  ,  x>0
-f(x) ,  x<0 

(Ⅰ)若f(-1)=0,且函数f(x)的值域为[0,+∞),求F(x)的表达式;
(Ⅱ)设m•n<0,m+n<0,a<0且f(x)为偶函数,判断F(m)+F(n)能否小于零.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程ax2+bx+2=0的两根为-
1
2
和2.
(1)求a、b的值;
(2)解不等式ax2+bx-1>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点M(3,1),直线ax-y+4=0及圆(x-1)2+(y-2)2=4.
(1)求过M点的圆的切线方程;
(2)若直线ax-y+4=0与圆相切,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在任何两边都不相等的锐角三角形ABC中,已知角A、B、C的对边分别为a、b、c,且2sin2A-cos2A
=2
(Ⅰ)求角B的取值范围;
(Ⅱ)求函数y=2sin2B+sin(2B+
π
6
)
的值域;
(Ⅲ)求证:b+c<2a.

查看答案和解析>>

科目:高中数学 来源: 题型:

若把函数y=sinωx的图象向左平移
π
3
个单位长度后,与函数y=sin(
π
2
+ωx)
的图象重合,则ω的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=|
b
|=1
,且它们的夹角为60°,则|2
a
-
b
|
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式2x2+mx+n>0的解集是{x|x>3或x<-2},则二次函数y=2x2+mx+n的表达式是(  )
A、y=2x2+2x+12
B、y=2x2-2x+12
C、y=2x2+2x-12
D、y=2x2-2x-12

查看答案和解析>>

同步练习册答案