精英家教网 > 高中数学 > 题目详情
已知函数f(x)=alnx+
1
2
x2-(a+1)x
(a≥1)
(1)讨论f(x)的单调性与极值点.
(2)若g(x)=
1
2
x2-x-1(x>1)
,证明当a=1时,g(x)的图象恒在f(x)的图象上方.
考点:导数在最大值、最小值问题中的应用,利用导数研究函数的单调性,函数在某点取得极值的条件
专题:综合题,导数的综合应用
分析:(1)求导数,分类讨论,确定函数的单调性,从而可得极值点.
(2)构造函数,再借助导数判断函数的单调性及极值得到函数的图象恒在x轴上方,问题得以解决.
解答: 解:(1)f′(x)=
a
x
+x-(a+1)=
x2-(a+1)x+a
x
=
(x-1)(x-a)
x
(x>0)

当a=1时,f′(x)=
(x-1)2
x
≥0
在(0,+∞)上恒成立,
∴f(x)在(0,+∞)单调递增,此时f(x)无极值点
当a>1时,f'(x),f(x)在定义域上的变化情况如下表:
x (0,1) (1,a) (a,+∞)
f'(x) + - +
f(x)
由此表可知f(x)在(0,1)和(a,+∞)上单调递增,f(x)在(1,a)上单调递减,
∴x=1为极大值点,x=a为极小值点…(6分)
(2)a=1时,令F(x)=g(x)-f(x)=
1
2
x2-x-1-lnx-
1
2
x2+2x=x-1-lnx 

F′(x)=1-
1
x
=
x-1
x

当x>1时,F'(x)>0,0<x<1时,F'(x)<0,
∴F(x)在(0  1)递减,在(1,+∞)上递增.
∴F(x)>F(1)=0,∴x>1时,F(x)>0恒成立
即x>1时,g(x)>f(x)恒成立,
∴当x>l时,g(x)的图象恒在f(x)的图象的上方…(12分)
点评:构造函数是解决问题的关键!能借助导数来判断函数的单调性及极值从而得到函数的图象.在解答的过程当中充分体现了分类讨论的思想、导数的思想以及问题转化的思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

要得到函数y=cos(2x-
π
3
)的图象,只需将函数y=sin(2x)的图象(  )
A、左移
π
12
个单位
B、右移
π
12
个单位
C、左移
12
个单位
D、右移
12
个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

某产品生产成本C万元与产量q件(q∈N*)的函数关系式为C=100+4q,销售单价p万元与产量q件的函数关系式为p=25-
1
4
q
.当产量为多少件时,每件产品的平均利润最大,且最大值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定点A(1,0),B为x轴负半轴上的动点,以AB为边作菱形ABCD,使其两对角线的交点H恰好落在y轴上.
(1)求动点D的轨迹E的方程;
(2)若四边形MPNQ的四个顶点都在曲线E上,M、N关于x轴对称,曲线E在点M处的切线为l,且PQ∥l.
①证明:直线PN与QN的斜率之和为定值;
②当点M的横坐标为
3
4
,纵坐标大于0,∠PNQ=60°,求四边形MPNQ的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-ax,g(x)=lnx
(1)若f(x)≥g(x)对于定义域内的x恒成立,求实数a的取值范围;
(2)设r(x)=f(x)+g(
1+ax
2
)
若对任意的a∈(1,2),总存在x0∈[ 
1
2
 , 1 ]
,使不等式r(x0)>k(1-a2)成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
sinxcosx-3sin2x-cos2x+3.
(1)当x∈[0,
π
2
]时,求f(x)的值域;
(2)若△ABC的内角A,B,C的对边分别为a,b,c,且满足
b
a
=
3
sin(2A+C)
sinA
=2+2cos(A+C),求f(B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-ax2-x;
(1)若f(x)在(-
1
3
,1)
上单调递减,在(1,+∞)上单调递增,求实数a的值;
(2)当a=
1
2
时,求证:当x>0时,f(x)≥x-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设变量x、y满足约束条件
x-y+2≥0
x-5y+10≤0
x+y-8≤0
,则目标函数z=3x-4y的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设A为圆周上一点,在圆周上等可能地任取一点与A连接,则弦长超过半径
2
倍的概率是
 

查看答案和解析>>

同步练习册答案