精英家教网 > 高中数学 > 题目详情
2.某家庭连续五年收入x与支出y如表:
年份20122013201420152016
收入(万元)8.28.610.011.311.9
支出(万元)6.27.58.08.59.8
画散点图知:y与x线性相关,且求得的回归方程是y=bx+a,其中b=0.76,则据此预计该家庭2017年若收入15万元,支出为(  )万元.
A.11.4B.11.8C.12.0D.12.2

分析 由表中数据计算平均数$\overline{x}$、$\overline{y}$,
代入回归方程求出a,写出回归方程,
把x=15代入回归方程计算$\stackrel{∧}{y}$的值.

解答 解:由表中数据,计算$\overline{x}$=$\frac{1}{5}$×(8.2+8.6+10.0+11.3+11.9)=10,
$\overline{y}$=$\frac{1}{5}$×(6.2+7.5+8.0+8.5+9.8)=8,
代入回归方程可得a=8-0.76×10=0.4,
∴回归方程为$\stackrel{∧}{y}$=0.76x+0.4,
把x=15代入回归方程计算$\stackrel{∧}{y}$=0.76×15+0.4=11.8.
故选:B.

点评 本题考查了线性回归方程与平均值的计算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.如图,平行四边形ABCD的两条对角线相交于点O,点E、F分别在边AB、AD上,$\overrightarrow{AE}$=$\frac{5}{7}$$\overrightarrow{AB}$,$\overrightarrow{AF}$=$\frac{1}{4}$$\overrightarrow{AD}$,直线EF交于AC于点K,$\overrightarrow{AK}$=λ$\overrightarrow{AO}$,则λ等于(  )
A.$\frac{8}{27}$B.$\frac{1}{3}$C.$\frac{10}{27}$D.$\frac{11}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知复数z满足(3-4i)z=1+2i(i为虚数单位),则z的共轭复数是(  )
A.-$\frac{1}{5}-\frac{2}{5}$iB.$-\frac{1}{5}+\frac{2}{5}i$C.$\frac{1}{5}+\frac{2}{5}$iD.$\frac{1}{5}-\frac{2}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列说法错误的是(  )
A.若命题p∧q为假命题,则p,q都是假命题
B.已知命题p:?x∈R,x2+x+1>0,则¬p:?x0∈R,x02+x0+1≤0
C.命题“若x2-3x+2=0,则x=1”的逆命题为:“若x≠1,则x2-3x+2≠0”
D.“x=1”是“x2-3x+2=0”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦点F(-c,0)(c>0),作圆x2+y2=a2的切线,切点为E,延长FE交双曲线右支于点P,若$\overrightarrow{OE}=\frac{1}{2}({\overrightarrow{OF}+\overrightarrow{OP}})$,则双曲线的离心率为(  )
A.$2\sqrt{5}$B.$\sqrt{5}$C.$\frac{{\sqrt{10}}}{2}$D.$\frac{{\sqrt{10}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=x-mlnx-\frac{m-1}{x}({m∈R})$,$g(x)=\frac{1}{2}{x^2}+{e^x}-x{e^x}$,
(1)当x∈[1,e],求f(x)的最小值,
(2)当m≤2时,若存在${x_1}∈[{e,{e^2}}]$,使得对任意x2∈[-2,0],f(x1)≤g(x2)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设向量$\overrightarrow{AB}=(1,4),\overrightarrow{BC}=(m,-1)$,且$\overrightarrow{AB}⊥\overrightarrow{BC}$,则实数m的值为(  )
A.-10B.-13C.-7D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=2sin2x+cos(2x-$\frac{π}{3}$)-1
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间[$\frac{π}{12}$,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分的中位数为me,众数为m0,平均值为$\overline x$,则(  )
A.me=m0=$\overline x$B.me=m0<$\overline x$C.me<m0<$\overline x$D.m0<me<$\overline x$

查看答案和解析>>

同步练习册答案