精英家教网 > 高中数学 > 题目详情
16.在等差数列{an}中,前n项和为Sn,若S10=20,S20=30,则S30=30.

分析 由等差数列的性质得S10,S20-S10,S30-S20成等差数列,由此能求出S30

解答 解:∵在等差数列{an}中,前n项和为Sn,S10=20,S20=30,
由等差数列的性质得S10,S20-S10,S30-S20成等差数列,
∴20,10,S30-30成等差数列,
∴2×10=20+S30-30,
解得S30=30.
故答案为:30.

点评 本题考查等差数列的前30项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=xlnx+a.
(1)若函数y=f(x)在x=e处的切线方程为y=2x,求实数a的值;
(2)设m>0,当x∈[m,2m]时,求f(x)的最小值;
(3)求证:${?_n}∈{N_+},{e^{1+\frac{1}{n}}}>{(1+\frac{1}{n})^e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,已知椭圆方程为$\frac{{x}^{2}}{2}$+y2=1,F是其左焦点,A、B在椭圆上,满足FA∥OB且|FA|:|OB|=3:2,则点A的横坐标为(  )
A.1B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某企业参加A项目生产的工人为1000人,平均每人每年创造利润10万元.根据现实的需要,从A项目中调出x人参与B项目的售后服务工作,每人每年可以创造利润10(a-$\frac{3x}{500}$)万元(a>0),A项目余下的工人每年创造利润需要提高0.2x%.
(1)若要保证A项目余下的工人创造的年总利润不低于原来1000名工人创造的年总利润,则最多调出多少人参加B项目从事售后服务工作?
(2)在(1)的条件下,当从A项目调出的人数不能超过总人数的40%时,才能使得A项目中留岗工人创造的年总利润始终不低于调出的工人所创造的年总利润,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,cosA=-$\frac{5}{13}$,cosB=$\frac{3}{5}$.求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图所示,在单位圆O中,∠AOH=α(0<α<$\frac{π}{2}$),若△AOH的面积记为S1,△BOC的面积记为S2,△AOC的面积为S3,扇形AOC的面积记为S4,则(  )
A.S1=$\frac{1}{2}$sinαB.S2=$\frac{1}{2}$tanαC.S3D.S4=$\frac{1}{2}$cosα

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在等差数列{an}中,a3+a4+a5+a6+a7=450.
(1)求a1+a9、a2+a8,并比较二者的大小;
(2)根据(1)的结论,写出一个可能成立的等式,并证明之.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.化简:$\frac{si{n}^{4}θ-co{s}^{4}θ}{si{n}^{2}θ-co{s}^{2}θ}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设常数a>0,(x2+$\frac{a}{x}$)5的二项展开式中x4项的系数为40,记等差数列{an}的前n项和为Sn,已知a2+a4=6,S4=5a,则a10=10.

查看答案和解析>>

同步练习册答案