精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
如图,在四棱柱中,底面是等腰梯形,是线段的中点.

(Ⅰ)求证:
(Ⅱ)若垂直于平面,求平面和平面所成的角(锐角)的余弦值.

(I)证明:见解析;(II)平面和平面ABCD所成角(锐角)的余弦值为.

解析试题分析:(I)由四边形ABCD是等腰梯形,且
可得.
连接,可得
从而得到四边形为平行四边形,
进一步可得平面.
(II)本题解答可有两种思路,一是向量法,二是几何法.
思路一:连接AC,MC,可得
得到.以C为坐标原点,建立直角坐标系.
利用.求角的余弦值.
思路二:按照“一作,二证,三计算”.
过C向AB引垂线交AB于N,连接
平面ABCD,可得
得到为二面角的平面角,
利用直角三角形中的边角关系计算平面和平面ABCD所成角(锐角)的余弦值.

试题解析:(I)证明:因为四边形ABCD是等腰梯形,

所以,又由M是AB的中点,
因此.
连接
在四棱柱中,
因为
可得
所以,四边形为平行四边形,
因此
平面平面
所以平面.

(II)解法一:
连接AC,MC,
由(I)知CD//AM且CD=AM,
所以四边形AMCD为平行四边形,
可得
由题意
所以为正三角形,
因此
因此.
以C为坐标原点,建立直角坐标系.

所以.
因此
所以
设平面的一个法向量
,得
可得平面的一个法向量.
为平面ABCD的一个法向量,
因此.
所以平面和平面ABCD所成角(锐角)的余弦值为.
解法二:
由(I)知,平面平面ABCD=AB,
过C向AB引垂线交AB于N,连接
平面ABCD,可得
因此为二面角的平面角,
中,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知四棱锥的底面为直角梯形,底面,且的中点.

(1)证明:面
(2)求所成的角的余弦值;
(3)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱柱中,已知平面平面,.
(1)求证:
(2)若为棱上的一点,且平面,求线段的长度

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,圆锥顶点为P,底面圆心为O,其母线与底面所成的角为22.5°,AB和CD是底面圆O上的两条平行的弦,轴OP与平面PCD所成的角为60°.

(1)证明:平面PAB与平面PCD的交线平行于底面;
(2)求cos∠COD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,四棱锥中,⊥平面,,分别为线段的中点.

(1)求证:∥平面;    
(2)求证:⊥平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正三棱柱ABC-A1B1C1中,点D为棱AB的中点,BC=1,AA1=.
(1)求证:BC1∥平面A1CD;
(2)求三棱锥D-A1B1C的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示的多面体中, 是菱形,是矩形,,

(1)求证:平
(2)若,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2011•山东)如图,在四棱台ABCD﹣A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四边形,AB=2AD,AD=A1B1,∠BAD=60°.
(1)证明:AA1⊥BD;
(2)证明:CC1∥平面A1BD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在空间四边形中,分别是的中点,,则异面直线所成的角为            

查看答案和解析>>

同步练习册答案