精英家教网 > 高中数学 > 题目详情

如图所示的多面体中, 是菱形,是矩形,,

(1)求证:平
(2)若,求四棱锥的体积.

(1)  (2))

解析试题分析:(1)利用直线与平面平行的判定定理证明,BC,利用面面平行的判定定理可得结论;
(2)首先要找到四棱锥,为此连接,易证, 即为四棱锥的高,最后求得,可求四棱锥的体积

(1)由是菱形



是矩形



 
(2)连接
是菱形,
,



为四棱锥的高
是菱形,
为等边三角形,
;则

考点:平面与平面平行的判定;棱锥的体积

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中,平面侧面,且
(1) 求证:
(2) 若直线与平面所成的角为,求锐二面角的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,在四棱柱中,底面是等腰梯形,是线段的中点.

(Ⅰ)求证:
(Ⅱ)若垂直于平面,求平面和平面所成的角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
在平行四边形中,.将沿折起,使得平面平面,如图.

(1)求证:
(2)若中点,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,底面为矩形,平面的中点.
(1)证明://平面
(2)设,三棱锥的体积,求到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在正三棱柱ABC-A1B1C1中,AB=AA1,D、E分别是棱A1B1、AA1的中点,点F在棱AB上,且
(1)求证:EF∥平面BDC1;  
(2)求证:平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)(2011•福建)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB.

(Ⅰ)求证:CE⊥平面PAD;
(Ⅱ)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P﹣ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,侧面PAD底面ABCD,侧棱,底面ABCD为直角梯形,其中BC//AD,ABAD,AD=2,AB=BC=l,E为AD中点.
(1)求证:PE平面ABCD:
(2)求异面直线PB与CD所成角的余弦值:
(3)求点A到平面PCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

四棱锥底面是菱形,,分别是的中点.

(1)求证:平面⊥平面
(2)上的动点,与平面所成的最大角为,求二面角的正切值.

查看答案和解析>>

同步练习册答案