精英家教网 > 高中数学 > 题目详情

如图,在四棱柱中,已知平面平面,.
(1)求证:
(2)若为棱上的一点,且平面,求线段的长度

(1) 详见解析,(2)

解析试题分析:(1)先根据面面垂直性质定理,将面面垂直条件转化为线面垂直:在四边形中,因为,,所以,又平面平面,且平面平面, 平面,所以平面,再利用线面垂直性质定理转化为线线垂直:因为平面,所以,(2)先根据线面平行性质定理,将线面平行转化为线线平行:因为平面平面,平面平面,所以然后在平面中解得
(1)四边形中,因为,,所以,      2分
又平面平面,且平面平面, 平面,
所以平面,------5分 
又因为平面,所以--7分 
(2)因为平面平面,平面平面,所以,所以E为BC的中点,        14分
考点:面面垂直性质定理,线面平行性质定理

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中,平面侧面,且
(1) 求证:
(2) 若直线与平面所成的角为,求锐二面角的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥P—ABC中,D,E,F分别为棱PC,AC,AB的中点.已知PA⊥AC,PA=6,BC=8,DF=5.

求证:(1)直线PA∥平面DFE;
(2)平面BDE⊥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,⊥底面,四边形是直角梯形,,,,.

(1)求证:平面⊥平面
(2)求点C到平面的距离;
(3)求PC与平面PAD所成的角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求证:PC⊥BC;
(2)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,在四棱柱中,底面是等腰梯形,是线段的中点.

(Ⅰ)求证:
(Ⅱ)若垂直于平面,求平面和平面所成的角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
在平行四边形中,.将沿折起,使得平面平面,如图.

(1)求证:
(2)若中点,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,侧面PAD底面ABCD,侧棱,底面ABCD为直角梯形,其中BC//AD,ABAD,AD=2,AB=BC=l,E为AD中点.
(1)求证:PE平面ABCD:
(2)求异面直线PB与CD所成角的余弦值:
(3)求点A到平面PCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在长方体中,=,点为棱的中点,则二面角的大小为          (结果用反三角函数值表示)

查看答案和解析>>

同步练习册答案