精英家教网 > 高中数学 > 题目详情
3.已知二次函数f(x)=x2+ax+b对于任意x都有f(2-x)=f(2+x),且f(-1)=2,求a、b的值.

分析 由已知中f(2-x)=f(2+x)恒成立,可得函数的图象关于直线x=2对称,进而结合f(-1)=2,可求a、b的值.

解答 解:∵二次函数f(x)=x2+ax+b对于任意x都有f(2-x)=f(2+x),
∴函数f(x)的图象关于直线x=2对称,
即$-\frac{a}{2}$=2,
解得:a=-4,
又由f(-1)=2,
∴1+4+b=2,
解得:b=-3

点评 本题考查的知识点是二次函数的图象和性质,其中根据已知分析出函数f(x)的图象关于直线x=2对称,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知|$\overrightarrow{OA}$|=1,|$\overrightarrow{OB}$|=m,∠AOB=$\frac{3}{4}$π,点C在∠AOB内且$\overrightarrow{OA}•\overrightarrow{OC}$=0,若$\overrightarrow{OC}=2λ\overrightarrow{OA}+λ\overrightarrow{OB}$(λ≠0),则m=$2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在直角坐标系xoy中,曲线C的参数方程为$\left\{\begin{array}{l}x=sinα-cosα\\ y=sin2α\end{array}\right.(α$为参数),若以原点O为极点、x轴的正半轴为极轴建立极坐标系,曲线E的极坐标方程为$ρsin(θ-\frac{π}{4})=\sqrt{2}m$,若曲线C与曲线E有且只有一个公共点,则实数m的值为$[-\frac{{\sqrt{2}+1}}{2},\frac{{\sqrt{2}-1}}{2})∪\left\{{\frac{5}{8}}\right\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{a}{x}$+xlnx,g(x)=x3-$\frac{1}{2}$mx2+n,若函数y=g(x)的图象经过点M(1,-3),且在点M处的切线恰好与直线x+y-3=0垂直.
(1)求m,n的值;
(2)求函数y=g(x)在[0,2]上最大值和最小值;
(3)如果对任意s,t∈[$\frac{1}{2}$,2]都有f(s)≥g(t)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知某人投篮投中的概率为$\frac{1}{3}$,该人四次投篮实验,且每次投篮相互独立,设ξ表示四次实验结束时投中次数与没有投中次数之差的绝对值.
(1)求随机变量ξ的数学期望E(ξ);
(2)记“函数f(x)=x2-ξx-1在区间(2,3)上有且只有一个零点”为事件A,求事件A发生的概率P(A).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,C是圆O的直径AB上一点,CD⊥AB,与圆O相交于点D,与弦AF交于点E,与BF的延长线相交于点G.GT与圆相切于点T.
(I)证明:CD2=CE•CG;
(Ⅱ)若AC=CO=1,CD=3CE,求GT.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某中学为了解学生“掷实心球”项目的整体情况,随机抽取男、女生各20名进行测试,记录的数据如下:
男生投掷距离(单位:米)女生投掷距离(单位:米)
9  7  754  6
8  7  664 5 5 6 6 6 9
   6  670 0 2 4 4 5 5 5 5 8
8 5 5 3 081
7  3  1 19
   2  2 010
已知该项目评分标准为:
男生投掷距离(米)[5.4,6.0)[6.0,6.6)[6.6,7.4)[7.4,7.8)[7.8,8.6)[8.6,10.0)[10.0,+∞)
女生投掷距离(米)[5.1;5.4)[5.4,5.6)[5.6,6.4)[6.4,7.8)[6.8,7.2)[7.2,7.6)[7.6,+∞)
个人得分(分)45678910
(Ⅰ)求上述20名女生得分的中位数和众数;
(Ⅱ)从上述20名男生中,有6人的投掷距离低于7.0米,现从这6名男生中随机抽取2名男生,求抽取的2名男生得分都是4分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.将正整数按如图排列,其中处于从左到右第m列从下到上第n行的数
记为A(m,n),如A(3,1)=4,A(4,2)=12,则A(10,3)
=69;A(1,n)=$\frac{n(n+1)}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.现有4人去旅游,旅游地点有A,B两个地方可以选择,但4人都不知道去哪里玩,于是决定通过掷一枚质地均匀的骰子决定自己去哪里玩,并决定掷出能被3整除的数时去A地,掷出其他的则去B地.
(Ⅰ)求这4个人中恰好有1个人去B地的概率;
(Ⅱ)求这4个人中去A地的人数大于去B的人数的概率;
(Ⅲ)用X,Y分别表示这4个人中去A,B两地的人数,记ξ=X•Y.求随机变量ξ的分布列与数学期望Eξ.

查看答案和解析>>

同步练习册答案