精英家教网 > 高中数学 > 题目详情
设椭圆C:的左、右焦点分别为F1、F2,A是椭圆C上的一点,,坐标原点O到直线AF1的距离为.
(1)求椭圆C的方程;
(2)设Q是椭圆C上的一点,过点Q的直线l 交 x 轴于点,交 y 轴于点M,若,求直线l 的斜率.
(1)         (2) .
(1)根据三角形相似和椭圆的定义求出中,由勾股定理求出,即得椭圆的方程;(2)设直线l 的斜率为k , 点,求出点的坐标,由得点的坐标用表示,再由点在椭圆上,求得
(1)由于,则有,过
   
  
故所求椭圆C的方程为
(2) 由题意知直线l 的斜率存在.设直线l 的斜率为k , 直线l 的方程为, 则有M(0,k),设,由于Q, F,M三点共线,且,根据题意,得,解得
又点Q在椭圆上,所以 
解得.综上,直线l 的斜率为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率,A,B分别为椭圆的长轴和短轴的端点,M为AB的中点,O为坐标原点,且.
(1)求椭圆的方程;
(2)过(-1,0)的直线交椭圆于P,Q两点,求△POQ面积最大时直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆C方程:(x-1)2 + y 2=9,垂直于x轴的直线L与圆C相切于N点(N在圆心C的右侧),平面上有一动点P,若PQ⊥L,垂足为Q,且

(1)求点P的轨迹方程; 
(2)已知D为点P的轨迹曲线上第一象限弧上一点,O为原点,A、B分别为点P的轨迹曲线与轴的正半轴的交点,求四边形OADB的最大面积及D点坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(本小题满分12分)
如图所示,点在圆上,轴,点在射线上,且满足.

(Ⅰ)当点在圆上运动时,求点的轨迹的方程,并根据取值说明轨迹的形状.
(Ⅱ)设轨迹轴正半轴交于点,与轴正半轴交于点,直线与轨迹交于点,点在直线上,满足,求实数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1、F2是双曲线的左右焦点,过F1的直线与左支交于A、B两点,若,则该双曲线的离心率是为(   )
A.            B.        C.        D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

抛物线在点P处的切线分别交x轴、y轴于不同的两点A、B,。当点P在C上移动时,点M的轨迹为D。
(1)求曲线D的方程:
(2)圆心E在y轴上的圆与直线相切于点P,当|PE|=|PA|,求圆的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆E经过点A(2,3),对称轴为坐标轴,焦点在x轴上,离心率
(1)求椭圆E的方程;
(2)求的角平分线所在直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线的参数方程为(t为参数),其中p>0,焦点为F,准线为. 过抛物线上一点M作的垂线,垂足为E. 若|EF|=|MF|,点M的横坐标是3,则p = ______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)在平面直角坐标系xOy中,已知定点A(-2,0)、B(2,0),M是动点,且直线MA与直线MB的斜率之积为,设动点M的轨迹为曲线C.
(I)求曲线C的方程;
(II)过定点T(-1,0)的动直线与曲线C交于P,Q两点,若,证明:为定值.

查看答案和解析>>

同步练习册答案