精英家教网 > 高中数学 > 题目详情

(13分)(2011•重庆)设α∈R,f(x)=cosx(asinx﹣cosx)+cos2﹣x)满足,求函数f(x)在上的最大值和最小值.

最大值是: 2  最小值为:

解析试题分析:利用二倍角公式化简函数f(x),然后,求出a的值,进一步化简为f(x)=2sin(2x﹣),然后根据x的范围求出2x﹣,的范围,利用单调性求出函数的最大值和最小值.
解:f(x)=cosx(asinx﹣cosx)+cos2﹣x)
=asinxcosx﹣cos2x+sin2x
=

解得a=2
所以f(x)=2sin(2x﹣),
所以x∈[]时2x﹣,f(x)是增函数,
所以x∈[]时2x﹣,f(x)是减函数,
函数f(x)在上的最大值是:f()=2;
又f()=,f()=
所以函数f(x)在上的最小值为:f()=
点评:本题是中档题,考查三角函数的化简,二倍角公式的应用,三角函数的求值,函数的单调性、最值,考查计算能力,常考题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,且.
(1)求的值;
(2)若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的值;
(2)求的最大值和最小正周期;
(3)若是第二象限的角,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,且

的最小值是,求实数的值;
,若方程内有两个不同的解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是否存在实数a,使得函数在闭区间上的最大值是1?若存在,求出对应的a值?若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,且以为最小正周期.
(1)求
(2)求的解析式;
(3)已知,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.(1)求函数的值域;(2)求函数的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,且函数的最大值为,最小值为
(1)求的值;
(2)(ⅰ)求函数的单调递增区间;
(ⅱ)求函数的对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最小正周期和单调增区间;
(2)求函数在区间上的最小值和最大值;
(3)若,求使取值范围.

查看答案和解析>>

同步练习册答案